[1] Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013). doi: 10.1038/nature12187
[2] Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013). doi: 10.1126/science.1237240
[3] Dean, C. R. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598–602 (2013). doi: 10.1038/nature12186
[4] Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). doi: 10.1038/nature26160
[5] Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). doi: 10.1038/nature26154
[6] Chen, G. R. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019). doi: 10.1038/s41586-019-1393-y
[7] Chen, G. R. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019). doi: 10.1038/s41567-018-0387-2
[8] Chen, G. R. et al. Tunable correlated chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020). doi: 10.1038/s41586-020-2049-7
[9] Warner, J. H., Mukai, M. & Kirkland, A. I. Atomic structure of ABC rhombohedral stacked trilayer graphene. ACS Nano 6, 5680–5686 (2012). doi: 10.1021/nn3017926
[10] Lui, C. H. et al. Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011). doi: 10.1021/nl1032827
[11] Lui, C. H. et al. Observation of an electrically tunable band gap in trilayer graphene. Nat. Phys. 7, 944–947 (2011). doi: 10.1038/nphys2102
[12] Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011). doi: 10.1038/nphys2103
[13] Aoki, M. & Amawashi, H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 142, 123–127 (2007). doi: 10.1016/j.ssc.2007.02.013
[14] Craciun, M. F. et al. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat. Nanotechnol. 4, 383–388 (2009). doi: 10.1038/nnano.2009.89
[15] Zou, K. et al. Transport studies of dual-gated ABC and ABA trilayer graphene: band gap opening and band structure tuning in very large perpendicular electric fields. Nano Lett. 13, 369–373 (2013). doi: 10.1021/nl303375a
[16] Jiang, L. L. et al. Manipulation of domain-wall solitons in bi- and trilayer graphene. Nat. Nanotechnol. 13, 204–208 (2018). doi: 10.1038/s41565-017-0042-6
[17] Yankowitz, M. et al. Electric field control of soliton motion and stacking in trilayer graphene. Nat. Mater. 13, 786–789 (2014). doi: 10.1038/nmat3965
[18] Jiang, L. L. et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nat. Mater. 15, 840–844 (2016). doi: 10.1038/nmat4653
[19] Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015). doi: 10.1038/nature14364
[20] Vaezi, A. et al. Topological edge states at a tilt boundary in gated multilayer graphene. Phys. Rev. X 3, 021018 (2013).
[21] Semenoff, G. W., Semenoff, V. & Zhou, F. Domain walls in gapped graphene. Phys. Rev. Lett. 101, 087204 (2008). doi: 10.1103/PhysRevLett.101.087204
[22] Zhang, W. J. et al. Molecular adsorption induces the transformation of rhombohedral- to Bernal-stacking order in trilayer graphene. Nat. Commun. 4, 2074 (2013). doi: 10.1038/ncomms3074
[23] Li, H. Y. et al. Global control of stacking-order phase transition by doping and electric field in few-layer graphene. Nano Lett. 20, 3106–3112 (2020). doi: 10.1021/acs.nanolett.9b05092
[24] Hao, Y. F. et al. Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 6, 195–200 (2010). doi: 10.1002/smll.200901173
[25] Cong, C. X. et al. Raman characterization of ABA- and ABC-stacked trilayer graphene. ACS Nano 5, 8760–8768 (2011). doi: 10.1021/nn203472f
[26] Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013). doi: 10.1038/nnano.2013.46
[27] Yang, Y. P. et al. Stacking order in graphite films controlled by van der Waals technology. Nano Lett. 19, 8526–8532 (2019). doi: 10.1021/acs.nanolett.9b03014
[28] Wilhelm, H. A., Croset, B. & Medjahdi, G. Proportion and dispersion of rhombohedral sequences in the hexagonal structure of graphite powders. Carbon 45, 2356–2364 (2007). doi: 10.1016/j.carbon.2007.07.010
[29] Qu, Y. R. et al. Thermal camouflage based on the phase-changing material GST. Light Sci. Appl. 7, 26 (2018). doi: 10.1038/s41377-018-0038-5
[30] Muskens, O. L. et al. Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide. Light Sci. Appl. 5, e16173 (2016). doi: 10.1038/lsa.2016.173
[31] Yue, Y. F. et al. Light-induced mechanical response in crosslinked liquid-crystalline polymers with photoswitchable glass transition temperatures. Nat. Commun. 9, 3234 (2018). doi: 10.1038/s41467-018-05744-x
[32] Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015). doi: 10.1126/science.aab3175
[33] Tan, Y. et al. Controllable 2H-to-1T′ phase transition in few-layer MoTe2. Nanoscale 10, 19964–19971 (2018). doi: 10.1039/C8NR06115G
[34] Zhang, M. Y. et al. Light-induced subpicosecond lattice symmetry switch in MoTe2. Phys. Rev. X 9, 021036 (2019).
[35] Lin, J. H. et al. AC/AB stacking boundaries in bilayer graphene. Nano Lett. 13, 3262–3268 (2013). doi: 10.1021/nl4013979
[36] Shan, Y. W. et al. Stacking symmetry governed second harmonic generation in graphene trilayers. Sci. Adv. 4, eaat0074 (2018). doi: 10.1126/sciadv.aat0074
[37] Papasimakis, N. et al. Strain engineering in graphene by laser irradiation. Appl. Phys. Lett. 106, 061904 (2015). doi: 10.1063/1.4907776
[38] Alexeev, E., Moger, J. & Hendry, E. Photo-induced doping and strain in exfoliated graphene. Appl. Phys. Lett. 103, 151907 (2013). doi: 10.1063/1.4823552
[39] Laves, F. & Baskin, Y. On the formation of the rhombohedral graphite modification. Z. für. Kristallographie Cryst. Mater. 107, 337–356 (1956). doi: 10.1524/zkri.1956.107.5-6.337
[40] Calizo, I. et al. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7, 2645–2649 (2007). doi: 10.1021/nl071033g
[41] Calizo, I. et al. Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices. Appl. Phys. Lett. 91, 071913 (2007). doi: 10.1063/1.2771379
[42] Son, S. K. et al. Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air. 2D Mater. 5, 011006 (2018). doi: 10.1088/2053-1583/aa97b5
[43] Luo, F. et al. Graphene thermal emitter with enhanced joule heating and localized light emission in air. ACS Photonics 6, 2117–2125 (2019). doi: 10.1021/acsphotonics.9b00667
[44] Latychevskaia, T. et al. Stacking transition in rhombohedral graphite. Front. Phys. 14, 13608 (2019). doi: 10.1007/s11467-018-0867-y
[45] Lin, Y. C. et al. Graphene annealing: how clean can it be? Nano Lett. 12, 414–419 (2012). doi: 10.1021/nl203733r
[46] Hong, J. et al. Origin of new broad Raman D and G peaks in annealed graphene. Sci. Rep. 3, 2700 (2013). doi: 10.1038/srep02700
[47] Cançado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011). doi: 10.1021/nl201432g
[48] Eckmann, A. et al. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925–3930 (2012). doi: 10.1021/nl300901a
[49] Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). doi: 10.1103/PhysRev.136.B864
[50] Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). doi: 10.1063/1.1329672
[51] Freitag, M. et al. Energy dissipation in graphene field-effect transistors. Nano Lett. 9, 1883–1888 (2009). doi: 10.1021/nl803883h
[52] Kim, Y. D. et al. Bright visible light emission from graphene. Nat. Nanotechnol. 10, 676–681 (2015). doi: 10.1038/nnano.2015.118
[53] Lee, J. U. et al. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys. Rev. B 83, 081419 (2011). doi: 10.1103/PhysRevB.83.081419
[54] Sabatini, R., Gorni, T. & De Gironcoli, S. Nonlocal van der Waals density functional made simple and efficient. Phys. Rev. B 87, 041108 (2013). doi: 10.1103/PhysRevB.87.041108
[55] Vydrov, O. A. & Van Voorhis, T. Nonlocal van der Waals density functional: the simpler the better. J. Chem. Phys. 133, 244103 (2010). doi: 10.1063/1.3521275
[56] Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). doi: 10.1088/0953-8984/21/39/395502
[57] Sun, J. W., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015). doi: 10.1103/PhysRevLett.115.036402
[58] Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013). doi: 10.1103/PhysRevB.88.085117
[59] Sohier, T., Calandra, M. & Mauri, F. Density functional perturbation theory for gated two-dimensional heterostructures: theoretical developments and application to flexural phonons in graphene. Phys. Rev. B 96, 075448 (2017). doi: 10.1103/PhysRevB.96.075448
[60] Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989). doi: 10.1103/PhysRevB.40.3616
[61] Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). doi: 10.1103/PhysRevB.13.5188
[62] Dai, J. Y., Yuan, J. M. & Giannozzi, P. Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl. Phys. Lett. 95, 232105 (2009). doi: 10.1063/1.3272008