[1] You, L., Zha, D. J. & Anslyn, E. V. Recent advances in supramolecular analytical chemistry using optical sensing. Chem. Rev. 115, 7840–7892 (2015). doi: 10.1021/cr5005524
[2] Silvi, S. & Credi, A. Luminescent sensors based on quantum dot–molecule conjugates. Chem. Soc. Rev. 44, 4275–4289 (2015). doi: 10.1039/C4CS00400K
[3] Foreman, M. R., Swaim, J. D. & Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photonics 7, 168–240 (2015). doi: 10.1364/AOP.7.000168
[4] He, L. N. et al. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 6, 428–432 (2011). doi: 10.1038/nnano.2011.99
[5] Li, B. B. et al. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl Acad. Sci. USA 111, 14657–14662 (2014). doi: 10.1073/pnas.1408453111
[6] Su, J., Goldberg, A. F. & Stoltz, B. M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light.: Sci. Appl. 5, e16001 (2016). doi: 10.1038/lsa.2016.1
[7] Heylman, K. D. et al. Optical microresonators as single-particle absorption spectrometers. Nat. Photonics 10, 788–795 (2016). doi: 10.1038/nphoton.2016.217
[8] Mauranyapin, N. P. et al. Evanescent single-molecule biosensing with quantum-limited precision. Nat. Photonics 11, 477–481 (2017). doi: 10.1038/nphoton.2017.99
[9] Yu, X. C. et al. Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field. Light.: Sci. Appl. 7, 18003 (2018). doi: 10.1038/lsa.2018.3
[10] Tang, S. J. et al. On‐chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects. Adv. Mater. 30, 1800262 (2018). doi: 10.1002/adma.201800262
[11] Bonefacino, J. et al. Ultra-fast polymer optical fibre Bragg grating inscription for medical devices. Light.: Sci. Appl. 7, 17161 (2018). doi: 10.1038/lsa.2017.161
[12] Piliarik, M. & Sandoghdar, V. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 5, 4495 (2014). doi: 10.1038/ncomms5495
[13] Zhang, Y. et al. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. 5, 4424 (2014). doi: 10.1038/ncomms5424
[14] Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017). doi: 10.1038/nature23280
[15] Chen, W. J. et al. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017). doi: 10.1038/nature23281
[16] Liu, J. et al. Repeated photoporation with graphene quantum dots enables homogeneous labeling of live cells with extrinsic markers for fluorescence microscopy. Light.: Sci. Appl. 7, 47 (2018). doi: 10.1038/s41377-018-0048-3
[17] Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32, 490–495 (2014). doi: 10.1038/nbt.2886
[18] Baaske, M. D., Foreman, M. R. & Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 9, 933–939 (2014). doi: 10.1038/nnano.2014.180
[19] Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018). doi: 10.1126/science.aas9768
[20] Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012). doi: 10.1038/nature11458
[21] Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). doi: 10.1038/nmat1967
[22] Loh, K. P. et al. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024 (2010). doi: 10.1038/nchem.907
[23] Yu, X. W. et al. Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017). doi: 10.1038/natrevmats.2017.46
[24] Liu, Y. X., Dong, X. C. & Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283–2307 (2012). doi: 10.1039/C1CS15270J
[25] Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015). doi: 10.1126/science.aab2051
[26] Wen, H. M. et al. Complex formation dynamics in a single-molecule electronic device. Sci. Adv. 2, e1601113 (2016). doi: 10.1126/sciadv.1601113
[27] Lipani, L. et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018). doi: 10.1038/s41565-018-0112-4
[28] Yao, B. C. et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature 558, 410–414 (2018). doi: 10.1038/s41586-018-0216-x
[29] Singh, E., Meyyappan, M. & Nalwa, H. S. Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 9, 34544–34586 (2017). doi: 10.1021/acsami.7b07063
[30] Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008). doi: 10.1038/nmeth.1208
[31] Yao, B. C. et al. Graphene-enhanced brillouin optomechanical microresonator for ultrasensitive gas detection. Nano Lett. 17, 4996–5002 (2017). doi: 10.1021/acs.nanolett.7b02176
[32] Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003). doi: 10.1146/annurev.physchem.54.011002.103746
[33] Gong, C. Y. et al. Reproducible fiber optofluidic laser for disposable and array applications. Lab a Chip 17, 3431–3436 (2017). doi: 10.1039/C7LC00708F
[34] Yao, B. C. et al. Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection. IEEE Photonics Technol. Lett. 27, 2399–2402 (2015). doi: 10.1109/LPT.2015.2466614
[35] Fan, X. D. & Yun, S. H. The potential of optofluidic biolasers. Nat. Methods 11, 141–147 (2014). doi: 10.1038/nmeth.2805
[36] Medintz, I. L. et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2, 630–638 (2003). doi: 10.1038/nmat961
[37] Sasakura, K. et al. Development of a highly selective fluorescence probe for hydrogen sulfide. J. Am. Chem. Soc. 133, 18003–18005 (2011). doi: 10.1021/ja207851s
[38] Thomas, S. W., Joly, G. D. & Swager, T. M. Chemical Sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107, 1339–1386 (2007). doi: 10.1021/cr0501339
[39] Hong, G. S. et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 5, 4206 (2014). doi: 10.1038/ncomms5206
[40] Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008). doi: 10.1021/cr068107d
[41] Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nat. Photonics 6, 440–449 (2012). doi: 10.1038/nphoton.2012.142
[42] He, S. J. et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20, 453–459 (2010). doi: 10.1002/adfm.200901639