[1] Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987). doi: 10.1063/1.98799
[2] Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999). doi: 10.1038/16393
[3] Pope, M., Kallmann, H. P. & Magnante, P. Electroluminescence in organic crystals. J. Chem. Phys. 38, 2042–2043 (1963). doi: 10.1063/1.1733929
[4] Baldo, M. A., O'Brien, D. F., Thompson, M. E. & Forrest, S. R. Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60, 14422–14428 (1999). doi: 10.1103/PhysRevB.60.14422
[5] Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90, 5048–5051 (2001). doi: 10.1063/1.1409582
[6] Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998). doi: 10.1038/25954
[7] Kawamura, Y. et al. 100% phosphorescence quantum efficiency of Ir(Ⅲ) complexes in organic semiconductor films. Appl. Phys. Lett. 86, 071104 (2005). doi: 10.1063/1.1862777
[8] Forget, S. & Chénais, S. Organic Solid-State Lasers (Springer, Berlin, Heidelberg, 2013).
[9] Bobbert, P. A. Manipulating spin in organic spintronics. Science 345, 1450–1451 (2014). doi: 10.1126/science.1259655
[10] Hu, B. & Wu, Y. Tuning magnetoresistance between positive and negative values in organic semiconductors. Nat. Mater. 6, 985–991 (2007). doi: 10.1038/nmat2034
[11] Nguyen, T. D., Gautam, B. R., Ehrenfreund, E. & Vardeny, Z. V. Magnetoconductance response in unipolar and bipolar organic diodes at ultrasmall fields. Phys. Rev. Lett. 105, 166804 (2010). doi: 10.1103/PhysRevLett.105.166804
[12] Bobbert, P. A., Nguyen, T. D., van Oost, F. W. A., Koopmans, B. & Wohlgenannt, M. Bipolaron mechanism for organic magnetoresistance. Phys. Rev. Lett. 99, 216801 (2007). doi: 10.1103/PhysRevLett.99.216801
[13] Wu, Y., Xu, Z. H., Hu, B. & Howe, J. Tuning magnetoresistance and magnetic-field-dependent electroluminescence through mixing a strong-spin-orbital-coupling molecule and a weak-spin-orbital-coupling polymer. Phys. Rev. B 75, 035214 (2007). doi: 10.1103/PhysRevB.75.035214
[14] Mahato, R. N. et al. Ultrahigh magnetoresistance at room temperature in molecular wires. Science 341, 257–260 (2013). doi: 10.1126/science.1237242
[15] Prigodin, V. N., Bergeson, J. D., Lincoln, D. M. & Epstein, A. J. Anomalous room temperature magnetoresistance in organic semiconductors. Synth. Met. 156, 757–761 (2006). doi: 10.1016/j.synthmet.2006.04.010
[16] Janssen, P. et al. Tuning organic magnetoresistance in polymer-fullerene blends by controlling spin reaction pathways. Nat. Commun. 4, 2286 (2013). doi: 10.1038/ncomms3286
[17] Kalinowski, J., Szmytkowski, J. & Stampor, W. Magnetic hyperfine modulation of charge photogeneration in solid films of Alq3. Chem. Phys. Lett. 378, 380–387 (2003). doi: 10.1016/j.cplett.2003.07.010
[18] Wilkinson, J., Davis, A. H., Bussmann, K. & Long, J. P. Evidence for charge-carrier mediated magnetic-field modulation of electroluminescence in organic light-emitting diodes. Appl. Phys. Lett. 86, 111109 (2005). doi: 10.1063/1.1883322
[19] Müller, J. G. et al. Ultrafast dynamics of charge carrier photogeneration and geminate recombination in conjugated polymer: fullerene solar cells. Phys. Rev. B 72, 195208 (2005). doi: 10.1103/PhysRevB.72.195208
[20] Szmytkowski, J., Stampor, W., Kalinowski, J. & Kafafi, Z. H. Electric field-assisted dissociation of singlet excitons in tris-(8-hydroxyquinolinato) aluminum (Ⅲ). Appl. Phys. Lett. 80, 1465 (2002). doi: 10.1063/1.1450055
[21] Stampor, W. Electromodulation of fluorescence in hole-transporting materials (TPD, TAPC) for organic light-emitting diodes. Chem. Phys. 256, 351–362 (2000). doi: 10.1016/S0301-0104(00)00123-3
[22] Kalinowski, J. et al. Coexistence of dissociation and annihilation of excitons on charge carriers in organic phosphorescent emitters. Phys. Rev. B 74, 085316 (2006). doi: 10.1103/PhysRevB.74.085316
[23] Wittmer, M. & Zschokke-Gränacher, I. Exciton–charge carrier interactions in the electroluminescence of crystalline anthracene. J. Chem. Phys. 63, 4187–4194 (1975). doi: 10.1063/1.431177
[24] Tolstov, I. V. et al. On the role of magnetic field spin effect in photoconductivity of composite films of MEH-PPV and nanosized particles of PbS. J. Lumin. 112, 368–371 (2005). doi: 10.1016/j.jlumin.2004.09.091
[25] Levinson, J., Weisz, S. Z., Cobas, A. & Rolón, A. Determination of the triplet exciton-trapped electron interaction rate constant in anthracene crystals. J. Chem. Phys. 52, 2794–2795 (1970). doi: 10.1063/1.1673392
[26] Shen, Z. L., Burrows, P. E., Bulović, V., Forrest, S. R. & Thompson, M. E. Three-color, tunable, organic light-emitting devices. Science 276, 2009–2011 (1997). doi: 10.1126/science.276.5321.2009
[27] Fröbel, M. et al. Get it white: color-tunable AC/DC OLEDs. Light Sci. Appl. 4, e247 (2015). doi: 10.1038/lsa.2015.20
[28] Berggren, M. et al. Light-emitting diodes with variable colours from polymer blends. Nature 372, 444–446 (1994). doi: 10.1038/372444a0
[29] Al Attar, H. A., Monkman, A. P., Tavasli, M., Bettington, S. & Bryce, M. R. White polymeric light-emitting diode based on a fluorene polymer/Ir complex blend system. Appl. Phys. Lett. 86, 121101 (2005). doi: 10.1063/1.1873046
[30] Parthasarathy, G., Gu, G. & Forrest, S. R. A full-color transparent metal-free stacked organic light emitting device with simplified pixel biasing. Adv. Mater. 11, 907–910 (1999). doi: 10.1002/(SICI)1521-4095(199908)11:11<907::AID-ADMA907>3.0.CO;2-L
[31] Xu, J. W., Carroll, D. L., Smith, G. M., Dun, C. C. & Cui, Y. Achieving high performance in AC-field driven organic light sources. Sci. Rep. 6, 24116 (2016). doi: 10.1038/srep24116
[32] Xu, J. W. et al. Layered, nanonetwork composite cathodes for flexible, high-efficiency, organic light emitting devices. Adv. Funct. Mater. 25, 4397–4404 (2015). doi: 10.1002/adfm.201501068
[33] Chen, Y. H., Xia, Y. D., Smith, G. M. & Carroll, D. L. Frequency-dependent, alternating current-driven, field-induced polymer electroluminescent devices with high power efficiency. Adv. Mater. 26, 8133–8140 (2014). doi: 10.1002/adma.201402682
[34] Perumal, A. et al. Novel approach for alternating current (AC)-driven organic light-emitting devices. Adv. Funct. Mater. 22, 210–217 (2012). doi: 10.1002/adfm.201100747
[35] Tian, Y., Xu, X. J., Wang, J. S., Yao, C. & Li, L. D. Solution-processed white organic light-emitting diodes with enhanced efficiency by using quaternary ammonium salt doped conjugated polyelectrolyte. ACS Appl. Mater. Interfaces 6, 8631–8638 (2014). doi: 10.1021/am501466y
[36] Huang, F., Wu, H. B., Wang, D. L., Yang, W. & Cao, Y. Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem. Mater. 16, 708–716 (2004). doi: 10.1021/cm034650o
[37] Khramtchenkov, D. V., Arkhipov, V. I. & Bässler, H. Charge carrier recombination in organic bilayer electroluminescent diodes. I. Theory. J. Appl. Phys. 81, 6954–6962 (1997).
[38] Jonda, C. & Mayer, A. B. R. Investigation of the electronic properties of organic light-emitting devices by impedance spectroscopy. Chem. Mater. 11, 2429–2435 (1999). doi: 10.1021/cm991024b
[39] Pingree, L. S. C., Scott, B. J., Russell, M. T., Marks, T. J. & Hersam, M. C. Negative capacitance in organic light-emitting diodes. Appl. Phys. Lett. 86, 073509 (2005). doi: 10.1063/1.1865346
[40] Luo, H. W. et al. Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive. Sci. Adv. 2, e1600076 (2016). doi: 10.1126/sciadv.1600076
[41] Wang, J. P., Chepelianskii, A., Gao, F. & Greenham, N. C. Control of exciton spin statistics through spin polarization in organic optoelectronic devices. Nat. Commun. 3, 1191 (2012). doi: 10.1038/ncomms2194
[42] Cohen, A. E. Nanomagnetic control of intersystem crossing. J. Phys. Chem. A 113, 11084–11092 (2009). doi: 10.1021/jp907113p
[43] Manolopoulos, D. E. & Hore, P. J. An improved semiclassical theory of radical pair recombination reactions. J. Chem. Phys. 139, 124106 (2013). doi: 10.1063/1.4821817
[44] Thomas, J. K. Excited states and reactions in liquids. Ann. Rev. Phys. Chem. 21, 17–38 (1970). doi: 10.1146/annurev.pc.21.100170.000313
[45] Ding, B. F. et al. Magnetic field modulated exciton generation in organic semiconductors: an intermolecular quantum correlated effect. Phys. Rev. B 82, 205209 (2010). doi: 10.1103/PhysRevB.82.205209
[46] Song, J. Y., Stingelin, N., Drew, A. J., Kreouzis, T. & Gillin, W. P. Effect of excited states and applied magnetic fields on the measured hole mobility in an organic semiconductor. Phys. Rev. B 82, 085205 (2010). doi: 10.1103/PhysRevB.82.085205
[47] Caruntu, D., Caruntu, G. & O'Connor, C. J. Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J. Phys. D Appl. Phys. 40, 5801–5809 (2007). doi: 10.1088/0022-3727/40/19/001
[48] Goya, G. F. et al. Magnetic hyperthermia with Fe3O4 nanoparticles: the influence of particle size on energy absorption. IEEE Trans. Magn. 44, 4444–4447 (2008). doi: 10.1109/TMAG.2008.2003508
[49] Iida, H., Takayanagi, K., Nakanishi, T. & Osaka, T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J. Colloid Interface Sci. 314, 274–280 (2007). doi: 10.1016/j.jcis.2007.05.047