[1] Guan, Y. F., Katz, O., Small, E., Zhou, J. Y. & Silberberg, Y. Polarization control of multiply scattered light through random media by wavefront shaping. Opt. Lett. 37, 4663–4665 (2012). doi: 10.1364/OL.37.004663
[2] Park, J. H., Park, C., Yu, H., Cho, Y. H. & Park, Y. Dynamic active wave plate using random nanoparticles. Opt. Express 20, 17010–17016 (2012). doi: 10.1364/OE.20.017010
[3] Tripathi, S., Paxman, R., Bifano, T. & Toussaint, K. C. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media. Opt. Express 20, 16067–16076 (2012). doi: 10.1364/OE.20.016067
[4] Tripathi, S. & Toussaint, K. C. Harnessing randomness to control the polarization of light transmitted through highly scattering media. Opt. Express 22, 4412–4422 (2014). doi: 10.1364/OE.22.004412
[5] de Aguiar, H. B., Gigan, S. & Brasselet, S. Polarization recovery through scattering media. Sci. Adv. 3, e1600743 (2017). doi: 10.1126/sciadv.1600743
[6] Kiesewetter, D. V. Polarisation characteristics of light from multimode optical fibres. Quantum Electron. 40, 519–524 (2010). doi: 10.1070/QE2010v040n06ABEH013514
[7] Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012). doi: 10.1038/nphoton.2012.88
[8] Rotter, S. & Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017). doi: 10.1103/RevModPhys.89.015005
[9] Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011). doi: 10.1364/OE.19.018871
[10] Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012). doi: 10.1038/ncomms2024
[11] Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 109, 203901 (2012). doi: 10.1103/PhysRevLett.109.203901
[12] Caravaca-Aguirre, A. M., Niv, E., Conkey, D. B. & Piestun, R. Real-time resilient focusing through a bending multimode fiber. Opt. Express 21, 12881–12887 (2013). doi: 10.1364/OE.21.012881
[13] Gu, R. Y., Mahalati, R. N. & Kahn, J. M. Design of flexible multi-mode fiber endoscope. Opt. Express 23, 26905–26918 (2015). doi: 10.1364/OE.23.026905
[14] Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photonics 9, 529–535 (2015). doi: 10.1038/nphoton.2015.112
[15] Sivankutty, S. et al. Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber. Opt. Lett. 41, 3531–3534 (2016). doi: 10.1364/OL.41.003531
[16] Porat, A. et al. Widefield lensless imaging through a fiber bundle via speckle correlations. Opt. Express 24, 16835–16855 (2016). doi: 10.1364/OE.24.016835
[17] Caravaca-Aguirre, A. M. & Piestun, R. Single multimode fiber endoscope. Opt. Express 25, 1656–1665 (2017). doi: 10.1364/OE.25.001656
[18] Redding, B. & Cao, H. Using a multimode fiber as a high-resolution, low-loss spectrometer. Opt. Lett. 37, 3384–3386 (2012). doi: 10.1364/OL.37.003384
[19] Redding, B., Alam, M., Seifert, M. & Cao, H. High-resolution and broadband all-fiber spectrometers. Optica 1, 175–180 (2014). doi: 10.1364/OPTICA.1.000175
[20] Wan, N. H. et al. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre. Nat. Commun. 6, 7762 (2015). doi: 10.1038/ncomms8762
[21] Brasselet, S. Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging. Adv. Opt. Photonics 3, 205 (2011). doi: 10.1364/AOP.3.000205
[22] Stasio, N., Moser, C. & Psaltis, D. Calibration-free imaging through a multicore fiber using speckle scanning microscopy. Opt. Lett. 41, 3078–3081 (2016). doi: 10.1364/OL.41.003078
[23] Wright, L. G., Christodoulides, D. N. & Wise, F. W. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat. Photonics 9, 306–310 (2015). doi: 10.1038/nphoton.2015.61
[24] Wright, L. G. et al. Self-organized instability in graded-index multimode fibres. Nat. Photonics 10, 771–776 (2016). doi: 10.1038/nphoton.2016.227
[25] Defienne, H., Barbieri, M., Walmsley, I. A., Smith, B. J. & Gigan, S. Two-photon quantum walk in a multimode fiber. Sci. Adv. 2, e1501054 (2016). doi: 10.1126/sciadv.1501054
[26] Israel, Y., Tenne, R., Oron, D. & Silberberg, Y. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat. Commun. 8, 14786 (2017). doi: 10.1038/ncomms14786
[27] Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 7, 354–362 (2013). doi: 10.1038/nphoton.2013.94
[28] Doya, V., Legrand, O. & Mortessagne, F. Optimized absorption in a chaotic double-clad fiber amplifier. Opt. Lett. 26, 872–874 (2001). doi: 10.1364/OL.26.000872
[29] Michel, C., Doya, V., Legrand, O. & Mortessagne, F. Selective amplification of scars in a chaotic optical fiber. Phys. Rev. Lett. 99, 224101 (2007). doi: 10.1103/PhysRevLett.99.224101
[30] Fridman, M., Nixon, M., Dubinskii, M., Friesem, A. A. & Davidson, N. Principal modes in fiber amplifiers. Opt. Lett. 36, 388–390 (2011). doi: 10.1364/OL.36.000388
[31] Fridman, M., Suchowski, H., Nixon, M., Friesem, A. A. & Davidson, N. Modal dynamics in multimode fibers. J. Opt. Soc. Am. A 29, 541–544 (2012). doi: 10.1364/JOSAA.29.000541
[32] Chen, H. et al. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications. Nat. Photonics 10, 529–533 (2016). doi: 10.1038/nphoton.2016.125
[33] Florentin, R. et al. Shaping the light amplified in a multimode fiber. Light Sci. Appl. 6, e16208 (2017). doi: 10.1038/lsa.2016.208
[34] Okamoto, K. Fundamentals of Optical Waveguides (Academic Press, New York, 2010).
[35] Ho, K. P. & Kahn, J. M. Statistics of group delays in multimode fiber with strong mode coupling. J. Light. Technol. 29, 3119–3128 (2011). doi: 10.1109/JLT.2011.2165316
[36] Baranger, H. U. & Mello, P. A. Mesoscopic transport through chaotic cavities: a random S-matrix theory approach. Phys. Rev. Lett. 73, 142–145 (1994). doi: 10.1103/PhysRevLett.73.142
[37] Jalabert, R. A., Pichard, J. L. & Beenakker, C. W. J. Universal quantum signatures of chaos in ballistic transport. Europhys. Lett. 27, 255 (1994). doi: 10.1209/0295-5075/27/4/001
[38] Beenakker, C. W. J. Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731 (1997). doi: 10.1103/RevModPhys.69.731
[39] Arrizón, V., Ruiz, U., Carrada, R. & González, L. A. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A 24, 3500–3507 (2007). doi: 10.1364/JOSAA.24.003500
[40] Xiong, W. et al. Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling. Phys. Rev. Lett. 117, 053901 (2016). doi: 10.1103/PhysRevLett.117.053901