[1] Leach, R. Optical Measurement of Surface Topography. (Berlin, Heidelberg: Springer, 2011).
[2] Malacara, D. Optical Shop Testing. 3rd edn. (Hoboken, NJ: Wiley-Interscience, 2007).
[3] Wagner, C., Osten, W. & Seebacher, S. Direct shape measurement by digital wavefront reconstruction and multi-wavelength contouring. Optical Engineering 39, 79-85 (2000). doi: 10.1117/1.602338
[4] Carl, D. et al. Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths. Applied Optics 48, H1-H8 (2009). doi: 10.1364/AO.48.0000H1
[5] Lyncée Tec. Digital holography. at https://www.lynceetec.com/digital-holography/ on 2021-04-21.
[6] Parry, G. Some effects of surface roughness on the appearance of speckle in polychromatic light. Optics Communications 12, 75-78 (1974). doi: 10.1016/0030-4018(74)90077-7
[7] Fonseca, E. S. R. et al. Comparative analysis of autofocus functions in digital in-line phase-shifting holography. Applied Optics 55, 7663-7674 (2016). doi: 10.1364/AO.55.007663
[8] Gabor, D. A New microscopic principle. Nature 161, 777-778 (1948). doi: 10.1038/161777a0
[9] Goodman, J. W. & Lawrence, R. W. Digital image formation from electronically detected holograms. Applied Physics Letters 11, 77-79 (1967). doi: 10.1063/1.1755043
[10] Masuda, N. et al. Computer generated holography using a graphics processing unit. Optics Express 14, 603-608 (2006). doi: 10.1364/OPEX.14.000603
[11] Shimobaba, T. et al. Real-time digital holographic microscopy using the graphic processing unit. Optics Express 16, 11776-11781 (2008). doi: 10.1364/oe.16.011776
[12] Cai, L. Z., Liu, Q. & Yang, X. L. Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects. Optics Letters 29, 183-185 (2004). doi: 10.1364/OL.29.000183
[13] Greivenkamp, J. E. Generalized data reduction for heterodyne interferometry. Optical Engineering 23, 234350 (1984). doi: 10.1117/12.7973298
[14] Bruning, J. H. et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses. Applied Optics 13, 2693-2703 (1974). doi: 10.1364/AO.13.002693
[15] Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. Journal of the Optical Society of America 72, 156-160 (1982). doi: 10.1364/JOSA.72.000156
[16] Burke, J. Application and optimisation of the spatial phase shifting technique in digital speckle interferometry. PhD thesis, Carl von Ossietzky University Oldenburg, Oldenburg, 2000.
[17] Burke, J. & Helmers, H. Spatial versus temporal phase shifting in electronic speckle-pattern interferometry: noise comparison in phase maps. Applied Optics 39, 4598-4606 (2000). doi: 10.1364/AO.39.004598
[18] Kreis, T. Holographic Interferometry: Principles and Methods. (Berlin: Akademie Verlag, 1996).
[19] Seyler, T. Digitale holographie in der werkzeugmaschine. PhD thesis, BoD, Kaiserslautern, 2020.
[20] Kreis, T. Handbook of Holographic Interferometry: Optical and Digital Methods. (Weinheim: Wiley-VCH, 2005).
[21] M. Fratz. et al. Inline application of digital holography[Invited]. Applied Optics 58, G120-G126 (2019). doi: 10.1364/AO.58.00G120
[22] Seyler, T. et al. HoloPort – Design and integration of a digital holographic 3-D Sensor in machine tools. Journal of Sensors and Sensor Systems 9, 33-41 (2020). doi: 10.5194/jsss-9-33-2020
[23] Beckmann, T. Schnelle optische vermessung von mikrostrukturen auf tellergroßen flächen. Journal für Oberflächentechnik 60, 48-51 (2020).
[24] Beckmann, T. et al. High-speed deformation measurement using spatially phase-shifted speckle interferometry. Proceedings of SPIE 9006, Practical Holography XXVIII: Materials and Applications. San Francisco, California, United States: SPIE, 2017.
[25] Creath, K. Phase-shifting speckle interferometry. Applied Optics 24, 3053-3058 (1985). doi: 10.1364/ao.24.003053
[26] Fratz, M. et al. Inline application of digital holography[Invited]. Applied Optics 58, G120-G126 (2019). doi: 10.1364/AO.58.00G120
[27] Smith, G. T. Machine Tool Metrology: An Industrial Handbook. (Switzerland: Springer-Verlag, 2016).
[28] Brinksmeier, E. et al. Process signatures – an alternative approach to predicting functional workpiece properties. Procedia Engineering 19, 44-52 (2011). doi: 10.1016/j.proeng.2011.11.078
[29] Ramesh, R., Jyothirmai, S. & Lavanya, K. Intelligent automation of design and manufacturing in machine tools using an open architecture motion controller. Journal of Manufacturing Systems 32, 248-259 (2013). doi: 10.1016/j.jmsy.2012.11.004
[30] Möhring, H. C. et al. Intelligent tools for predictive process control. Procedia CIRP 57, 539-544 (2016). doi: 10.1016/j.procir.2016.11.093
[31] Luo, X. C. & Qin, Y. Hybrid Machining: Theory, Methods, and Case Studies. (Amsterdam: Elsevier, 2018).
[32] Schiller, A. et al. Motion compensation for interferometric off-center measurements of rotating objects with varying radii. APL Photonics 4, 71301 (2019). doi: 10.1063/1.5104353
[33] Abdelsalam Ibrahim, D. G. & Yasui, T. High-precision 3D surface topography measurement using high-stable multi-wavelength digital holography referenced by an optical frequency comb. Optics Letters 43, 1758-1761 (2018). doi: 10.1364/OL.43.001758
[34] Abdelsalam Ibrahim, D. G. & Yasui, T. Multi-object investigation using two-wavelength phase-shift interferometry guided by an optical frequency comb. Applied Physics Letters 112, 171101 (2018). doi: 10.1063/1.5024244