[1] |
Reed, G. T. et al. Silicon optical modulators. Nature Photonics 4, 518-526 (2010). doi: 10.1038/nphoton.2010.179 |
[2] |
Hochberg, M. & Baehr-Jones, T. Towards fabless silicon photonics. Nature Photonics 4, 492-494 (2010). doi: 10.1038/nphoton.2010.172 |
[3] |
Xiong, C. et al. Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices. Nano Letters 14, 1419-1425 (2014). doi: 10.1021/nl404513p |
[4] |
Ding, J. F. et al. Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator. Optics Express 20, 7081-7087 (2012). doi: 10.1364/OE.20.007081 |
[5] |
Cazzanelli, M. et al. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nature Materials 11, 148-154 (2012). doi: 10.1038/nmat3200 |
[6] |
Alexander, K. et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nature Communications 9, 3444 (2018). doi: 10.1038/s41467-018-05846-6 |
[7] |
McKee, R. A., Walker, F. J. & Chisholm, M. F. Crystalline oxides on silicon: the first five monolayers. Physical Review Letters 81, 3014-3017 (1998). doi: 10.1103/PhysRevLett.81.3014 |
[8] |
Castera, P. et al. Electro-optical modulation based on pockels effect in BaTiO3 with a multi-domain structure. IEEE Photonics Technology Letters 28, 990-993 (2016). doi: 10.1109/LPT.2016.2522509 |
[9] |
Abel, S. et al. Large pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nature Materials 18, 42-47 (2019). doi: 10.1038/s41563-018-0208-0 |
[10] |
Guarino, A. et al. Electro–optically tunable microring resonators in lithium niobate. Nature Photonics 1, 407-410 (2007). doi: 10.1038/nphoton.2007.93 |
[11] |
Jin, S. L. et al. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides. IEEE Photonics Technology Letters 28, 736-739 (2016). doi: 10.1109/LPT.2015.2507136 |
[12] |
Rao, A. et al. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Optics Letters 41, 5700-5703 (2016). doi: 10.1364/OL.41.005700 |
[13] |
Wang, J. et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Optics Express 23, 23072-23078 (2015). doi: 10.1364/OE.23.023072 |
[14] |
Cai, L. T., Kang, Y. & Hu, H. Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film. Optics Express 24, 4640-4647 (2016). doi: 10.1364/OE.24.004640 |
[15] |
Messner, A. et al. Plasmonic ferroelectric modulators. Journal of Lightwave Technology 37, 281-290 (2019). doi: 10.1109/JLT.2018.2881332 |
[16] |
Rabiei, P. et al. Heterogeneous lithium niobate photonics on silicon substrates. Optics Express 21, 25573-25573 (2013). doi: 10.1364/OE.21.025573 |
[17] |
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101-104 (2018). doi: 10.1038/s41586-018-0551-y |
[18] |
Mercante, A. J. et al. Thin LiNbO3 on insulator electro-optic modulator. Optics Letters 41, 867-869 (2016). doi: 10.1364/OL.41.000867 |
[19] |
He, M. B. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nature Photonics 13, 359-364 (2019). doi: 10.1038/s41566-019-0378-6 |
[20] |
Jian, J. et al. High modulation efficiency lithium niobate Michelson interferometer modulator. Optics Express 27, 18731-18739 (2019). doi: 10.1364/OE.27.018731 |
[21] |
Chang, L. et al. Thin film wavelength converters for photonic integrated circuits. Optica 3, 531-535 (2016). doi: 10.1364/OPTICA.3.000531 |
[22] |
Mercante, A. J. et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Optics Express 26, 14810-14816 (2018). doi: 10.1364/OE.26.014810 |
[23] |
Rao, A. & Fathpour, S. Compact lithium niobate electrooptic modulators. IEEE Journal of Selected Topics in Quantum Electronics 24, 3400114 (2018). |
[24] |
Weigel, P. O. et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Optics Express 26, 23728-23739 (2018). doi: 10.1364/OE.26.023728 |
[25] |
Kharel, P. et al. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes: erratum. Optica 8, 1218 (2021). doi: 10.1364/OPTICA.440484 |
[26] |
Abel, S. et al. A strong electro-optically active lead-free ferroelectric integrated on silicon. Nature Communications 4, 1671 (2013). doi: 10.1038/ncomms2695 |
[27] |
Petraru, A. et al. Integrated optical Mach–Zehnder modulator based on polycrystalline BaTiO3. Optics Letters 28, 2527-2529 (2003). doi: 10.1364/OL.28.002527 |
[28] |
Girouard, P. et al. X(2) Modulator with 40-GHz modulation utilizing BaTiO3 photonic crystal waveguides. IEEE Journal of Quantum Electronics 53, 5200110 (2017). |
[29] |
Tang, P. S. et al. Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator. Optics Express 12, 5962-5967 (2004). doi: 10.1364/OPEX.12.005962 |
[30] |
Eltes, F. et al. Thin-film BTO-based modulators enabling 200 Gb/s data rates with sub 1 Vpp drive signal. Proceedings of Optical Fiber Communication Conference. San Diego: Optica Publishing Group, 2023, Th4A. 2. |
[31] |
Eltes, F. et al. Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics. ACS Photonics 3, 1698-1703 (2016). doi: 10.1021/acsphotonics.6b00350 |
[32] |
Meier, A. R., Niu, F. & Wessels, B. W. Integration of BaTiO3 on Si (0 0 1) using MgO/STO buffer layers by molecular beam epitaxy. Journal of Crystal Growth 294, 401-406 (2006). doi: 10.1016/j.jcrysgro.2006.06.026 |
[33] |
Mazet, L. et al. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications. Science and Technology of Advanced Materials 16, 036005 (2015). doi: 10.1088/1468-6996/16/3/036005 |
[34] |
McKee, R. A. et al. Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon. Applied Physics Letters 59, 782-784 (1991). doi: 10.1063/1.105341 |
[35] |
Choi, M. et al. Strain relaxation in single crystal SrTiO3 grown on Si (001) by molecular beam epitaxy. Journal of Applied Physics 111, 064112 (2012). doi: 10.1063/1.3695998 |
[36] |
Kumah, D. P., Ngai, J. H. & Kornblum, L. Epitaxial oxides on semiconductors: from fundamentals to new devices. Advanced Functional Materials 30, 1901597 (2020). doi: 10.1002/adfm.201901597 |
[37] |
Posadas, A. B. et al. Thick BaTiO3 epitaxial films integrated on Si by RF sputtering for electro-optic modulators in Si photonics. ACS Applied Materials & Interfaces 13, 51230-51244 (2021). |
[38] |
Abel, S. et al. A hybrid barium titanate–silicon photonics platform for ultraefficient electro-optic tuning. Journal of Lightwave Technology 34, 1688-1693 (2016). doi: 10.1109/JLT.2015.2510282 |
[39] |
Wang, T. et al. 2–2 type PVDF-based composites interlayered by epitaxial (111)-oriented BTO films for high energy storage density (Adv. Funct. Mater. 10/2022). Advanced Functional Materials 32, 2270064 (2022). |
[40] |
Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nature Materials 15, 1255-1260 (2016). doi: 10.1038/nmat4749 |
[41] |
Hong, S. S. et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Nature Materials 368, 71-76 (2020). |
[42] |
Dong, G. H. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 366, 475-479 (2019). doi: 10.1126/science.aay7221 |
[43] |
An, F. et al. Highly flexible and twistable freestanding single crystalline magnetite film with robust magnetism. Advanced Functional Materials 30, 2003495 (2020). doi: 10.1002/adfm.202003495 |
[44] |
Ji, D. X. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87-90 (2019). doi: 10.1038/s41586-019-1255-7 |
[45] |
Gu, K. et al. Simple method to obtain large-size single-crystalline oxide sheets. Advanced Functional Materials 30, 2001236 (2020). doi: 10.1002/adfm.202001236 |
[46] |
Hou, W. X. et al. Epitaxial lift-off of flexible single-crystal magnetite thin films with tunable magnetic performances by mechanical deformation. Journal of Alloys and Compounds 887, 161470 (2021). doi: 10.1016/j.jallcom.2021.161470 |
[47] |
Eltes, F. et al. A BaTiO3-based electro-optic pockels modulator monolithically integrated on an advanced silicon photonics platform. Journal of Lightwave Technology 37, 1456-1462 (2019). doi: 10.1109/JLT.2019.2893500 |
[48] |
He, X. et al. Giant electromechanical response in layered ferroelectrics enabled by asymmetric ferroelastic switching. Materials Today 58, 48-56 (2022). doi: 10.1016/j.mattod.2022.07.010 |
[49] |
Zeng, H. R. et al. Field-induced displacement properties of nanoscale domain structure in PZT thin film. Acta Physica Sinica 54, 1437-1441 (2005). |
[50] |
Kwei, G. H. et al. Structures of the ferroelectric phases of barium titanate. Physical Review Materials 97, 2368-2377 (1993). |
[51] |
Castera, P. et al. Influence of BaTiO3 ferroelectric orientation for electro-optic modulation on silicon. Optics Express 23, 15332-15342 (2015). doi: 10.1364/OE.23.015332 |
[52] |
Pernice, W. H. P. et al. Design of a silicon integrated electro-optic modulator using ferroelectric BaTiO3 films. IEEE Photonics Technology Letters 26, 1344-1347 (2014). doi: 10.1109/LPT.2014.2322501 |
[53] |
Zgonik, M. et al. Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. Physical Review B 50, 5941-5949 (1994). doi: 10.1103/PhysRevB.50.5941 |
[54] |
Lyu, J. K. et al. Control of polar orientation and lattice strain in epitaxial BaTiO3 films on silicon. ACS Applied Materials & Interfaces 10, 25529-25535 (2018). |
[55] |
Kim, D. Y. et al. Electro-optic characteristics of (001)-oriented Ba0.6Sr0.4TiO3 thin films. Applied Physics Letters 82, 1455-1457 (2003). |
[56] |
Hoerman, B. H., Nichols, B. M. & Wessels, B. W. Dynamic response of the dielectric and electro-optic properties of epitaxial ferroelectric thin films. Physical Review B 65, 224110 (2002). doi: 10.1103/PhysRevB.65.224110 |
[57] |
Zhang, J. F. et al. Super-tetragonal Sr4Al2O7 as a sacrificial layer for high-integrity freestanding oxide membranes. Science 383, 388-394 (2024). doi: 10.1126/science.adi6620 |
[58] |
Menezo, S. et al. High-speed heterogeneous InP-on-Si capacitive phase modulators. Proceedings of Optical Fiber Communication Conference. San Diego: Optica Publishing Group, 2018, 1. |
[59] |
Dong, Z. M. et al. Monolithic barium titanate modulators on silicon-on-insulator substrates. ACS Photonics 10, 4367-4376 (2023). doi: 10.1021/acsphotonics.3c01144 |
[60] |
Zhou, J. Y. et al. Silicon photonics carrier depletion modulators capable of 85Gbaud 16QAM and 64Gbaud 64QAM. Proceedings of Optical Fiber Communication Conference. San Diego: Optica Publishing Group, 2019, 1. |