[1] Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013). doi: 10.1021/nn400280c
[2] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). doi: 10.1038/nnano.2012.193
[3] Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016). doi: 10.1038/nphoton.2015.282
[4] Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010). doi: 10.1021/nl903868w
[5] Mak, K. F., Lee, C. G., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). doi: 10.1103/PhysRevLett.105.136805
[6] Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013). doi: 10.1038/nmat3505
[7] Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012). doi: 10.1103/PhysRevB.86.115409
[8] Xiao, D., Liu, G. B., Feng, W. X., Xu, X. D. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012). doi: 10.1103/PhysRevLett.108.196802
[9] Zeng, H. L., Dai, J. F., Yao, W., Xiao, D. & Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012). doi: 10.1038/nnano.2012.95
[10] Mak, K. F., He, K. L., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012). doi: 10.1038/nnano.2012.96
[11] Malard, L. M., Alencar, T. V., Barboza, A. P. M., Mak, K. F. & de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 87, 201401 (2013). doi: 10.1103/PhysRevB.87.201401
[12] Kumar, N. et al. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B 87, 161403 (2013). doi: 10.1103/PhysRevB.87.161403
[13] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). doi: 10.1038/nnano.2010.279
[14] Gan, X. T. et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 103, 181119 (2013). doi: 10.1063/1.4826679
[15] Wu, S. F. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015). doi: 10.1038/nature14290
[16] Ye, Y. et al. Monolayer excitonic laser. Nat. Photonics 9, 733–737 (2015). doi: 10.1038/nphoton.2015.197
[17] Liu, X. Z. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30–34 (2014). doi: 10.1038/nphoton.2014.304
[18] Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015). doi: 10.1038/nnano.2015.67
[19] He, Y. M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015). doi: 10.1038/nnano.2015.75
[20] Yin, Z. Y. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012). doi: 10.1021/nn2024557
[21] Sundaram, R. S. et al. Electroluminescence in single layer MoS2. Nano Lett. 13, 1416–1421 (2013). doi: 10.1021/nl400516a
[22] Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 9, 268–272 (2014). doi: 10.1038/nnano.2014.26
[23] Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014). doi: 10.1126/science.1251329
[24] Li, Y. L. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014). doi: 10.1103/PhysRevB.90.205422
[25] Liu, H. L. et al. Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl. Phys. Lett. 105, 201905 (2014). doi: 10.1063/1.4901836
[26] Chen, H. T. et al. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light 6, e17060 (2017). doi: 10.1038/lsa.2017.60
[27] Schell, A. W., Takashima, H., Tran, T. T., Aharonovich, I. & Takeuchi, S. Coupling quantum emitters in 2D materials with tapered fibers. ACS Photonics 4, 761–767 (2017). doi: 10.1021/acsphotonics.7b00025
[28] Tonndorf, P. et al. On-chip waveguide coupling of a layered semiconductor single-photon source. Nano Lett. 17, 5446–5451 (2017). doi: 10.1021/acs.nanolett.7b02092
[29] Gan, X. T. et al. Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe. Light 7, 17129 (2018). doi: 10.1038/lsa.2017.126
[30] Fang, L. et al. Multiple optical frequency conversions in few-layer GaSe assisted by a photonic crystal cavity. Adv. Opt. Mater. 6, 1800698 (2018). doi: 10.1002/adom.201800698
[31] Li, Y. Z. et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 12, 987–992 (2017). doi: 10.1038/nnano.2017.128
[32] Wang, Z. et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat. Commun. 7, 11283 (2016). doi: 10.1038/ncomms11283
[33] Najmaei, S. et al. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures. ACS Nano 8, 12682–12689 (2014). doi: 10.1021/nn5056942
[34] Chen, H. T. et al. Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas. Sci. Rep. 6, 22296 (2016). doi: 10.1038/srep22296
[35] Gong, S. H., Alpeggiani, F., Sciacca, B., Garnett, E. C. & Kuipers, L. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science 359, 443–447 (2018). doi: 10.1126/science.aan8010
[36] Kang, Y. M. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014). doi: 10.1002/adma.201401802
[37] Akselrod, G. M. et al. Leveraging nanocavity harmonics for control of optical processes in 2D semiconductors. Nano Lett. 15, 3578–3584 (2015). doi: 10.1021/acs.nanolett.5b01062
[38] Zheng, D. et al. Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett. 17, 3809–3814 (2017). doi: 10.1021/acs.nanolett.7b01176
[39] Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407–411 (2015). doi: 10.1038/nnano.2015.73
[40] He, K. L., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931–2936 (2013). doi: 10.1021/nl4013166
[41] Wang, Y. L. et al. Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 8, 2562–2572 (2015). doi: 10.1007/s12274-015-0762-6
[42] Huang, Y. X., Guo, J. H., Kang, Y. J., Ai, Y. & Li, C. M. Two dimensional atomically thin MoS2 nanosheets and their sensing applications. Nanoscale 7, 19358–19376 (2015). doi: 10.1039/C5NR06144J
[43] Brambilla, G. et al. Optical fiber nanowires and microwires: Fabrication and applications. Adv. Opt. Photonics 1, 107–161 (2009). doi: 10.1364/AOP.1.000107
[44] Kou, J. L., Chen, J. H., Chen, Y., Xu, F. & Lu, Y. Q. Platform for enhanced light-graphene interaction length and miniaturizing fiber stereo devices. Optica 1, 307–310 (2014). doi: 10.1364/OPTICA.1.000307
[45] Yalla, R., Le Kien, F., Morinaga, M. & Hakuta, K. Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber. Phys. Rev. Lett. 109, 063602 (2012). doi: 10.1103/PhysRevLett.109.063602
[46] Yan, P. G. et al. Microfiber-based WS2-film saturable absorber for ultra-fast photonics. Opt. Mater. Express 5, 479–489 (2015). doi: 10.1364/OME.5.000479
[47] Du, J. et al. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 4, 6346 (2014). doi: 10.1038/srep06346
[48] Tong, L. M. et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003). doi: 10.1038/nature02193
[49] Janisch, C. et al. Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci. Rep. 4, 5530 (2014). doi: 10.1038/srep05530
[50] Wu, X. Q. et al. Effective transfer of micron-size graphene to microfibers for photonic applications. Carbon N. Y. 96, 1114–1119 (2016). doi: 10.1016/j.carbon.2015.10.069
[51] Zhao, W. J. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013). doi: 10.1021/nn305275h
[52] Zhu, B. R., Chen, X. & Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep. 5, 9218 (2015). doi: 10.1038/srep09218
[53] Cong, C. X., Shang, J. Z., Wang, Y. L. & Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 6, 1700767 (2018). doi: 10.1002/adom.201700767
[54] Berkdemir, A. et al. Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755 (2013). doi: 10.1038/srep01755
[55] Ni, Z. H. et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008). doi: 10.1021/nn800459e
[56] Naumis, G. G., Barraza-Lopez, S., Oliva-Leyva, M. & Terrones, H. Electronic and optical properties of strained graphene and other strained 2D materials: a review. Rep. Prog. Phys. 80, 096501 (2017). doi: 10.1088/1361-6633/aa74ef
[57] Schmidt, R. et al. Reversible uniaxial strain tuning in atomically thin WSe2. 2D Mater. 3, 021011 (2016). doi: 10.1088/2053-1583/3/2/021011
[58] He, X. et al. Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure. Appl. Phys. Lett. 109, 173105 (2016). doi: 10.1063/1.4966218
[59] Li, J. H., Chen, J. H., & Xu, F. Sensitive and wearable optical microfiber sensor for human health monitoring. Adv. Mater. Technol. https://doi.org/10.1002/admt.201800296.
[60] Lægsgaard, J. Theory of surface second-harmonic generation in silica nanowires. J. Opt. Soc. Am. B 27, 1317–1324 (2010). doi: 10.1364/JOSAB.27.001317
[61] Tong, L. M. Micro/nanofibre optical sensors: challenges and prospects. Sensors 18, 903 (2018). doi: 10.3390/s18030903
[62] Chen, J. H. et al. Microfiber-coupler-assisted control of wavelength tuning for Q-switched fiber laser with few-layer molybdenum disulfide nanoplates. Opt. Lett. 40, 3576–3579 (2015). doi: 10.1364/OL.40.003576
[63] Qin, C. B., Gao, Y., Qiao, Z. X., Xiao, L. T. & Jia, S. T. Atomic-layered MoS2 as a tunable optical platform. Adv. Opt. Mater. 4, 1429–1456 (2016). doi: 10.1002/adom.201600323