[1] Cutrale, F., Fraser, S. E. & Trinh, L. A. Imaging, visualization, and computation in developmental biology. Annu. Rev. Biomed. Data Sci. 2, 223–251 (2019). doi: 10.1146/annurev-biodatasci-072018-021305
[2] Gao, R. X. et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363, eaau8302 (2019). doi: 10.1126/science.aau8302
[3] Mertz, J. Introduction to optical microscopy. 2nd edn. (Cambridge University Press, Cambridge, 2019).
[4] Mertz, J. Optical sectioning microscopy with planar or structured illumination. Nat. Methods 8, 811–819 (2011). doi: 10.1038/nmeth.1709
[5] Carlton, P. M. et al. Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc. Natl Acad. Sci. USA 107, 16016–16022 (2010). doi: 10.1073/pnas.1004037107
[6] Hoebe, R. A. et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat. Biotechnol. 25, 249–253 (2007). doi: 10.1038/nbt1278
[7] Chu, K. K., Lim, D. & Mertz, J. Enhanced weak-signal sensitivity in two-photon microscopy by adaptive illumination. Opt. Lett. 32, 2846–2848 (2007). doi: 10.1364/OL.32.002846
[8] Staudt, T. et al. Far-field optical nanoscopy with reduced number of state transition cycles. Opt. Express 19, 5644–5657 (2011). doi: 10.1364/OE.19.005644
[9] Dreier, J. et al. Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo. Nat. Commun. 10, 1–11 (2019). doi: 10.1038/s41467-019-08442-4
[10] Vinçon, B., Geisler, C. & Egner, A. Pixel hopping enables fast STED nanoscopy at low light dose. Opt. Express 28, 4516–4528 (2020). doi: 10.1364/OE.385174
[11] Caarls, W. et al. Minimizing light exposure with the programmable array microscope. J. Microsc. 241, 101–110 (2011). doi: 10.1111/j.1365-2818.2010.03413.x
[12] Chakrova, N. et al. Adaptive illumination reduces photobleaching in structured illumination microscopy. Biomed. Opt. Express 7, 4263–4274 (2016). doi: 10.1364/BOE.7.004263
[13] Guillot, C. & Lecuit, T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340, 1185–1189 (2013). doi: 10.1126/science.1235249
[14] LeGoff, L., Rouault, H. & Lecuit, T. A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila wing disc. Development 140, 4051–4059 (2013). doi: 10.1242/dev.090878
[15] Heemskerk, I. & Streichan, S. J. Tissue cartography: compressing bio-image data by dimensional reduction. Nat. Methods 12, 1139–1142 (2015). doi: 10.1038/nmeth.3648
[16] Heemskerk, I., Lecuit, T. & LeGoff, L. Dynamic clonal analysis based on chronic in vivo imaging allows multiscale quantification of growth in the Drosophila wing disc. Development 141, 2339–2348 (2014). doi: 10.1242/dev.109264
[17] Heller, D. et al. Epitools: an open-source image analysis toolkit for quantifying epithelial growth dynamics. Dev. Cell 36, 103–116 (2016). doi: 10.1016/j.devcel.2015.12.012
[18] de Reuille, P. B. et al. Morphographx: A platform for quantifying morphogenesis in 4D. eLife 4, e05864 (2015). doi: 10.7554/eLife.05864
[19] Goldenberg, G. & Harris, T. J. C. Adherens junction distribution mechanisms during cell-cell contact elongation in Drosophila. PLoS ONE 8, e79613 (2013). doi: 10.1371/journal.pone.0079613
[20] Supatto, W. et al. In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc. Natl Acad. Sci. USA 102, 1047–1052 (2005). doi: 10.1073/pnas.0405316102
[21] Koester, H. J. et al. Ca2+ fluorescence imaging with pico-and femtosecond two-photon excitation: signal and photodamage. Biophys. J. 77, 2226–2236 (1999). doi: 10.1016/S0006-3495(99)77063-3
[22] Hopt, A. & Neher, E. Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys. J. 80, 2029–2036 (2001). doi: 10.1016/S0006-3495(01)76173-5
[23] Schmidt, E. & Oheim, M. Infrared excitation induces heating and calcium microdomain hyperactivity in cortical astrocytes. Biophys. J. 119, 2153–2165 (2020). doi: 10.1016/j.bpj.2020.10.027
[24] Godaliyadda, G. M. et al. A framework for dynamic image sampling based on supervised learning. IEEE Trans. Comput. Imaging 4, 1–16 (2018). doi: 10.1109/TCI.2017.2777482
[25] Hujsak, K. A. et al. High speed/low dose analytical electron microscopy with dynamic sampling. Micron 108, 31–40 (2018). doi: 10.1016/j.micron.2018.03.001
[26] Scherf, N. & Huisken, J. The smart and gentle microscope. Nat. Biotechnol. 33, 815–818 (2015). doi: 10.1038/nbt.3310
[27] Strobl, F., Schmitz, A. & Stelzer, E. H. K. Improving your four-dimensional image: traveling through a decade of light-sheet-based fluorescence microscopy research. Nat. Protoc. 12, 1103–1109 (2017). doi: 10.1038/nprot.2017.028
[28] Débarre, D. et al. Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0–1.2 μm wavelength range. PLoS ONE 9, e104250 (2014). doi: 10.1371/journal.pone.0104250
[29] Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018). doi: 10.1038/s41592-018-0216-7
[30] Xiao, S. et al. Video-rate volumetric neuronal imaging using 3d targeted illumination. Sci. Rep. 8, 7921 (2018). doi: 10.1038/s41598-018-26240-8
[31] Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. 104, 198101 (2010). doi: 10.1103/PhysRevLett.104.198101
[32] York, A. G. et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods 9, 749–754 (2012). doi: 10.1038/nmeth.2025
[33] Wu, J. J. et al. Resolution improvement of multifocal structured illumination microscopy with sparse bayesian learning algorithm. Opt. Exp. 26, 31430–31438 (2018). doi: 10.1364/OE.26.031430
[34] Chakrova, N., Rieger, B. & Stallinga, S. Development of a DMD-based fluorescence microscope. Proceedings of SPIE 9330, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXII. San Francisco: SPIE, 2015, 933008.
[35] Garthwaite, P. H., Jolliffe, I. T., Jolliffe, I. & Jones, B. Statistical inference. 2nd edn. (University Press on Demand, Oxford, 2002).
[36] Fischler, M. A. & Bolles, R. C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981). doi: 10.1145/358669.358692
[37] Sandwell, D. T. Biharmonic spline interpolation of geos-3 and seasat altimeter data. Geophys. Res. Lett. 14, 139–142 (1987). doi: 10.1029/GL014i002p00139
[38] Huang, J. et al. Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc. Natl Acad. Sci. USA 106, 8284–8289 (2009). doi: 10.1073/pnas.0900641106
[39] Beira, J. V. & Paro, R. The legacy of Drosophila imaginal discs. Chromosoma 125, 573–592 (2016). doi: 10.1007/s00412-016-0595-4