[1] Ray, P. C. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem. Revi. 110, 5332–5365 (2010). doi: 10.1021/cr900335q
[2] Zipfel, W. R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl Acad. Sci. USA 100, 7075–7080 (2003). doi: 10.1073/pnas.0832308100
[3] Karvonen, L. et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nat. Commun. 8, 15714 (2017). doi: 10.1038/ncomms15714
[4] Yu, H. K. et al. Single nanowire optical correlator. Nano Lett. 14, 3487–3490 (2014). doi: 10.1021/nl5010477
[5] Wolf, R. et al. Cascaded second-order optical nonlinearities in on-chip micro rings. Opt. Express 25, 29927–29933 (2017). doi: 10.1364/OE.25.029927
[6] Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407–411 (2015). doi: 10.1038/nnano.2015.73
[7] Ren, M. L. et al. Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes. Nat. Commun. 5, 5432 (2014). doi: 10.1038/ncomms6432
[8] Celebrano, M. et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol. 10, 412–417 (2015). doi: 10.1038/nnano.2015.69
[9] Fürst, J. U. et al. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett. 104, 153901 (2010). doi: 10.1103/PhysRevLett.104.153901
[10] Guo, X. et al. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett. 117, 123902 (2016). doi: 10.1103/PhysRevLett.117.123902
[11] Guo, X., Zou, C. L. & Tang, H. X. Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency. Optica 3, 1126–1131 (2016). doi: 10.1364/OPTICA.3.001126
[12] Wei, H. et al. Plasmon waveguiding in nanowires. Chem. Rev. 118, 2882–2926 (2018). doi: 10.1021/acs.chemrev.7b00441
[13] Fang, Y. R. & Sun, M. T. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. 4, e294 (2015). doi: 10.1038/lsa.2015.67
[14] Simon, H. J., Mitchell, D. E. & Watson, J. G. Optical second-harmonic generation with surface plasmons in silver films. Phys. Rev. Lett. 33, 1531–1534 (1974). doi: 10.1103/PhysRevLett.33.1531
[15] Chen, C. K., De Castro, A. R. B. & Shen, Y. R. Surface-enhanced second-harmonic generation. Phys. Rev. Lett. 46, 145–148 (1981). doi: 10.1103/PhysRevLett.46.145
[16] Canfield, B. K. et al. Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett. 7, 1251–1255 (2007). doi: 10.1021/nl0701253
[17] Li, Y. et al. Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires. Nano Lett. 17, 7803–7808 (2017). doi: 10.1021/acs.nanolett.7b04016
[18] Timpu, F. et al. Enhanced second-harmonic generation from sequential capillarity-assisted particle assembly of hybrid nanodimers. Nano Lett. 17, 5381–5388 (2017). doi: 10.1021/acs.nanolett.7b01940
[19] Chauvet, N. et al. Hybrid KTP–plasmonic nanostructures for enhanced nonlinear optics at the nanoscale. ACS Photonics 7, 665–672 (2020). doi: 10.1021/acsphotonics.9b01484
[20] Gili, V. F. et al. Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode. Beilstein J. Nanotechnol. 9, 2306–2314 (2018). doi: 10.3762/bjnano.9.215
[21] Linnenbank, H. et al. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas. Light Sci. Appl. 5, e16013 (2016). doi: 10.1038/lsa.2016.13
[22] Cambiasso, J. et al. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas. Nano Lett. 17, 1219–1225 (2017). doi: 10.1021/acs.nanolett.6b05026
[23] Shi, J. J. et al. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions. Nano Lett. 19, 3838–3845 (2019). doi: 10.1021/acs.nanolett.9b01004
[24] Chen, J. Y. et al. Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics. OSA Continuum 1, 229–242 (2018). doi: 10.1364/OSAC.1.000229
[25] Ueno, Y., Ricci, V. & Stegeman, G. I. Second-order susceptibility of Ga0.5In0.5P crystals at 1.5 µm and their feasibility for waveguide quasi-phase matching. J. Opt. Soc. Am. B 14, 1428–1436 (1997). doi: 10.1364/JOSAB.14.001428
[26] Sauvage, S. et al. Normal-incidence (001) second-harmonic generation in ordered Ga0.5In0.5P. J. Opt. Soc. Am. B 18, 81–84 (2001).
[27] De Ceglia, D. et al. Second-harmonic generation in mie-resonant GaAs nanowires. Appl. Sci. 9, 3381 (2019). doi: 10.3390/app9163381
[28] Liu, S. et al. Resonantly enhanced second-harmonic generation using Ⅲ-Ⅴ semiconductor all-dielectric metasurfaces. Nano Lett. 16, 5426–5432 (2016). doi: 10.1021/acs.nanolett.6b01816
[29] Timofeeva, M. et al. Anapoles in free-standing Ⅲ-Ⅴ nanodisks enhancing second-harmonic generation. Nano Lett. 18, 3695–3702 (2018). doi: 10.1021/acs.nanolett.8b00830
[30] Buckley, S. et al. Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations. ACS Photonics 1, 516–523 (2014). doi: 10.1021/ph500054u
[31] Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics. 2nd edn. (Wiley, Hoboken, 2007).
[32] Shi, J. J. et al. Steering second-harmonic beams in nanophotonic waveguides by gratings. ACS Photonics 6, 3142–3149 (2019). doi: 10.1021/acsphotonics.9b01218
[33] Liu, N. et al. Lithographically defined, room temperature low threshold subwavelength red-emitting hybrid plasmonic lasers. Nano Lett. 16, 7822–7828 (2016). doi: 10.1021/acs.nanolett.6b04017
[34] Aouani, H. et al. Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. Nano Lett. 12, 4997–5002 (2012). doi: 10.1021/nl302665m
[35] Oulton, R. F. et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496–500 (2008). doi: 10.1038/nphoton.2008.131
[36] Liu, N. et al. Plasmonic amplification with ultra-high optical gain at room temperature. Sci. Rep. 3, 1967 (2013). doi: 10.1038/srep01967
[37] Grange, R. et al. Far-field imaging for direct visualization of light interferences in GaAs nanowires. Nano Lett. 12, 5412–5417 (2012). doi: 10.1021/nl302896n
[38] Davoyan, A. R., Shadrivov, I. V. & Kivshar, Y. S. Quadratic phase matching in nonlinear plasmonic nanoscale waveguides. Opt. Express 17, 20063–20068 (2009). doi: 10.1364/OE.17.020063
[39] Zhang, J. H. et al. Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics. Opt. Express 21, 14876–14887 (2013). doi: 10.1364/OE.21.014876
[40] Wang, C. et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express 25, 6963–6973 (2017). doi: 10.1364/OE.25.006963