[1] Morel, A. et al. Optical properties of the “clearest” natural waters. Limnology and Oceanography 52, 217-229 (2007). doi: 10.4319/lo.2007.52.1.0217
[2] Westall, F. & Brack, A. The importance of water for life. Space Science Reviews 214, 50 (2018). doi: 10.1007/s11214-018-0476-7
[3] Jacques, S. L. Optical properties of biological tissues: a review. Physics in Medicine & Biology 58, R37-R61 (2013).
[4] McClatchey, R. A. Optical Properties of the Atmosphere. 3rd edn. (Bedford: Air Force Cambridge Research Laboratories, 1972).
[5] Rajaramakrishna, R. & Jakrapong, K. Glass material and their advanced applications. KnE Social Sciences 2019, 796-807 (2019).
[6] Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Science Advances 3, e1700782 (2017). doi: 10.1126/sciadv.1700782
[7] Gibb, B. C. Plastics are forever. Nature Chemistry 11, 394-395 (2019). doi: 10.1038/s41557-019-0260-7
[8] Hass, G. & Ritter, E. Optical film materials and their applications. Journal of Vacuum Science and Technology 4, 71-79 (1967). doi: 10.1116/1.1492525
[9] Wang, C. S. et al. Surface defect inspection and classification for glass screen of mobile phone. Proceedings of SPIE 11069, Tenth International Conference on Graphics and Image Processing (ICGIP 2018). Chengdu: SPIE, 2019, 110691U.
[10] Yacoubian, A. Optical Systems and Components (CRC PRESS-TAYLOR & FRANCIS GROUP, 2015).
[11] Cho, J. H., Cho, M. W. & Kim, M. K. Computer-aided design, manufacturing and inspection system integration for optical lens production. International Journal of Production Research 40, 4271-4283 (2002). doi: 10.1080/00207540210152911
[12] Rebsamen, M., Boucheix, J. M. & Fayol, M. Quality control in the optical industry: from a work analysis of lens inspection to a training programme, an experimental case study. Applied Ergonomics 41, 150-160 (2010). doi: 10.1016/j.apergo.2009.07.004
[13] Satorres Martínez, S. et al. A sensor planning system for automated headlamp lens inspection. Expert Systems with Applications 36, 8768-8777 (2009). doi: 10.1016/j.eswa.2008.11.044
[14] Hideki, T. et al. Ultrahighly accurate 3D profilometer. Proceedings of SPIE 5638, Optical Design and Testing II. Beijing: SPIE, 2005.
[15] Shenq-Tsong, C. et al. The measurement of optical and geometric parameters by a coordinate measuring machine. Proceedings of SPIE 8527, Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications IV. Kyoto: SPIE, 2012, 85270T.
[16] Gigilashvili, D. et al. Translucency perception: a review. Journal of Vision 21, 4 (2021).
[17] Singh. M. Transparency and translucency. in Computer Vision: A Reference Guide (ed Ikeuchi, K. ) (Cham: Springer, 2020), 1-5.
[18] Burini Junior, E. C. et al. CIE 175: 2006 A Framework for the Measurement of Visual Appearance. Proceedings of the CIE Expert Symposium on Visual Appearance. Paris: CIE 175, 2006.
[19] Gupta, R. et al. Visibly transparent heaters. ACS Applied Materials & Interfaces 8, 12559-12575 (2016).
[20] Husain, A. A. F. et al. A review of transparent solar photovoltaic technologies. Renewable and Sustainable Energy Reviews 94, 779-791 (2018). doi: 10.1016/j.rser.2018.06.031
[21] Yu, H. L. et al. Semi-transparent organic photovoltaics. Chemical Society Reviews 52, 4132-4148 (2023). doi: 10.1039/D3CS00233K
[22] Zhu, H. L. et al. Transparent paper: fabrications, properties, and device applications. Energy & Environmental Science 7, 269-287 (2014).
[23] Jiang, J. Q. et al. Robotic perception of transparent objects: a review. IEEE Transactions on Artificial Intelligence 5, 2547-2567 (2024). doi: 10.1109/TAI.2023.3326120
[24] Wang, S. F. et al. Transparent ceramics: processing, materials and applications. Progress in Solid State Chemistry 41, 20-54 (2013). doi: 10.1016/j.progsolidstchem.2012.12.002
[25] McHenry, K. , Ponce, J. & Forsyth, D. Finding glass. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005). San Diego: IEEE Computer Society, 2005, 973-979.
[26] Xu, Y. C. et al. Light field distortion feature for transparent object classification. Computer Vision and Image Understanding 139, 122-135 (2015). doi: 10.1016/j.cviu.2015.02.009
[27] Xu, Y. C. et al. TransCut2: transparent object segmentation from a light-field image. IEEE Transactions on Computational Imaging 5, 465-477 (2019). doi: 10.1109/TCI.2019.2893820
[28] Tsai, D. et al. Distinguishing refracted features using light field cameras with application to structure from motion. IEEE Robotics and Automation Letters 4, 177-184 (2019). doi: 10.1109/LRA.2018.2884765
[29] Zhou, Z. M. et al. GlassLoc: plenoptic grasp pose detection in transparent clutter. Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau, China: IEEE, 2019, 4776-4783.
[30] Tsai, D. et al. Refractive light-field features for curved transparent objects in structure from motion. IEEE Robotics and Automation Letters 6, 6923-6930 (2021). doi: 10.1109/LRA.2021.3093873
[31] Wang, T. , He, X. M. & Barnes, N. Glass object localization by joint inference of boundary and depth. Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Tsukuba: IEEE, 2012, 3783-3786.
[32] Madessa, A. H. et al. Leveraging an instance segmentation method for detection of transparent materials. Proceedings of 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). Leicester: IEEE, 2019, 406-412.
[33] Xu, Z. G. et al. Real-time transparent object segmentation based on improved DeepLabv3+. Proceedings of 2021 China Automation Congress (CAC). Beijing: IEEE, 2021, 4310-4315.
[34] Yu, L. T. et al. Progressive glass segmentation. IEEE Transactions on Image Processing 31, 2920-2933 (2022). doi: 10.1109/TIP.2022.3162709
[35] Sajjan, S. et al. Clear grasp: 3D shape estimation of transparent objects for manipulation. Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris: IEEE, 2020, 3634-3642.
[36] Yu, H. X. et al. TGF-Net: Sim2Real transparent object 6D pose estimation based on geometric fusion. IEEE Robotics and Automation Letters 8 , 3868-3875 (2023).
[37] Okada, K. et al. Whole shape estimation of transparent object from its contour using statistical shape model. Proceedings of 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Detroit: IEEE, 2023, 1327-1333.
[38] Kutulakos, K. N. & Steger, E. A theory of refractive and specular 3D shape by light-path triangulation. International Journal of Computer Vision 76, 13-29 (2008).
[39] Kim, J. , Reshetouski, I. & Ghosh, A. Acquiring axially-symmetric transparent objects using single-view transmission imaging. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017, 1484-1492.
[40] Koyama, K. et al. 3D Shape Reconstruction of 3D Printed Transparent Microscopic Objects from Multiple Photographic Images Using Ultraviolet Illumination. Micromachines 9 , 261 (2018).
[41] Gkioulekas, I. , Levin, A. & Zickler, T. An evaluation of computational imaging techniques for heterogeneous inverse scattering. in Computer Vision – ECCV 2016 (eds Leibe, B. et al. ) (Cham: Springer, 2016), 685-701.
[42] Che, C. Q. et al. Towards learning-based inverse subsurface scattering. Proceedings of 2020 IEEE International Conference on Computational Photography (ICCP). St. Louis: IEEE, 2020, 1-12.
[43] Martínez, S. S. et al. A machine vision system for defect characterization on transparent parts with non-plane surfaces. Machine Vision and Applications 23, 1-13 (2012). doi: 10.1007/s00138-010-0281-0
[44] Martínez, S. S. et al. An industrial vision system for surface quality inspection of transparent parts. The International Journal of Advanced Manufacturing Technology 68, 1123-1136 (2013). doi: 10.1007/s00170-013-4904-2
[45] Gruber, D. P. & Haselmann, M. Inspection of transparent objects with varying light scattering using a frangi filter. Journal of Imaging 7, 27 (2021). doi: 10.3390/jimaging7020027
[46] Gong, W. et al. Adaptive visual inspection method for transparent label defect detection of curved glass bottle. Proceedings of 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL). Chongqing: IEEE, 2020, 90-95.
[47] Deng, Y. L., Xu, S. P. & Lai, W. W. A novel imaging-enhancement-based inspection method for transparent aesthetic defects in a polymeric polarizer. Polymer Testing 61, 333-340 (2017). doi: 10.1016/j.polymertesting.2017.05.029
[48] Deng, Y. L. et al. Vison-based 3D shape measurement system for transparent microdefect characterization. IEEE Access 7, 105721-105733 (2019). doi: 10.1109/ACCESS.2019.2931194
[49] Erozan, A. T., Bosse, S. & Tahoori, M. B. Defect detection in transparent printed electronics using learning-based optical inspection. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29, 1505-1517 (2021). doi: 10.1109/TVLSI.2021.3082476
[50] Yin, Z. Y. et al. Efficient and precise detection for surface flaws on large-aperture optics based on machine vision and machine learning. Optics & Laser Technology 159, 109011 (2023).
[51] Taherimakhsousi, N. et al. Quantifying defects in thin films using machine vision. npj Computational Materials 6, 111 (2020). doi: 10.1038/s41524-020-00380-w
[52] Farmahini-Farahani, M., Cheng, J. R. & Mosallaei, H. Metasurfaces nanoantennas for light processing. Journal of the Optical Society of America B 30, 2365-2370 (2013). doi: 10.1364/JOSAB.30.002365
[53] Ruan, Z. C. et al. Spatial control of surface plasmon polariton excitation at planar metal surface. Optics Letters 39, 3587-3590 (2014). doi: 10.1364/OL.39.003587
[54] AbdollahRamezani, S. et al. Analog computing using graphene-based metalines. Optics Letters 40, 5239-5242 (2015). doi: 10.1364/OL.40.005239
[55] Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Analog computing using reflective plasmonic metasurfaces. Nano Letters 15, 791-797 (2015). doi: 10.1021/nl5047297
[56] Chizari, A. et al. Analog optical computing based on a dielectric meta-reflect array. Optics Letters 41, 3451-3454 (2016). doi: 10.1364/OL.41.003451
[57] Lou, Y. J. et al. Spatial coupled-mode theory for surface plasmon polariton excitation at metallic gratings. Journal of the Optical Society of America B 33, 819-824 (2016). doi: 10.1364/JOSAB.33.000819
[58] Cordaro, A. et al. High-index dielectric metasurfaces performing mathematical operations. Nano Letters 19, 8418-8423 (2019). doi: 10.1021/acs.nanolett.9b02477
[59] Wan, L. et al. Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces. Optics Letters 45, 2070-2073 (2020). doi: 10.1364/OL.386986
[60] Xiao, T. T. et al. Realization of tunable edge-enhanced images based on computing metasurfaces. Optics Letters 47, 925-928 (2022). doi: 10.1364/OL.450988
[61] Li, Q. Y. et al. Surface topography detection based on an optical differential metasurface. Optics Letters 48, 4801-4804 (2023). doi: 10.1364/OL.497090
[62] Karimi, P., Khavasi, A. & Khaleghi, S. S. M. Fundamental limit for gain and resolution in analog optical edge detection. Optics Express 28, 898-911 (2020). doi: 10.1364/OE.379492
[63] Zhang, S. High-speed 3D shape measurement with structured light methods: a review. Optics and Lasers in Engineering 106, 119-131 (2018).
[64] Van der Jeught, S. & Dirckx, J. J. J. Real-time structured light profilometry: a review. Optics and Lasers in Engineering 87, 18-31 (2016). doi: 10.1016/j.optlaseng.2016.01.011
[65] Xu, J. & Zhang, S. Status, challenges, and future perspectives of fringe projection profilometry. Optics and Lasers in Engineering 135, 106193 (2020). doi: 10.1016/j.optlaseng.2020.106193
[66] Geng, J. Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics 3, 128-160 (2011). doi: 10.1364/AOP.3.000128
[67] Huang, L. et al. Review of phase measuring deflectometry. Optics and Lasers in Engineering 107, 247-257 (2018). doi: 10.1016/j.optlaseng.2018.03.026
[68] Ji, Y. J., Xia, Q. & Zhang, Z. J. Fusing depth and silhouette for scanning transparent object with RGB-D sensor. International Journal of Optics 2017, 9796127 (2017).
[69] Lei, H. & Asundi, A. A. Phase retrieval from reflective fringe patterns of double-sided transparent objects. Measurement Science and Technology 23, 085201 (2012). doi: 10.1088/0957-0233/23/8/085201
[70] Ye, J. Q. et al. In-situ deflectometic measurement of transparent optics in precision robotic polishing. Precision Engineering 64, 63-69 (2020). doi: 10.1016/j.precisioneng.2020.03.011
[71] Yang, S. C. et al. Line-encoded structured light measurement method in measuring shiny and transparent objects. Journal of Optics 25, 045701 (2023). doi: 10.1088/2040-8986/acbb8b
[72] Liu, D. , Chen, X. D. & Yang, Y. H. Frequency-based 3D reconstruction of transparent and specular objects. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014, 660-667.
[73] He, K. J. et al. 3D surface reconstruction of transparent objects using laser scanning with LTFtF method. Optics and Lasers in Engineering 148 , 106774 (2022).
[74] Rantoson, R. et al. Non contact 3D measurement scheme for transparent objects using UV structured light. Proceedings of 2010 20th International Conference on Pattern Recognition. Istanbul: IEEE, 2010, 1646-1649.
[75] Gu, J. W. et al. Compressive structured light for recovering inhomogeneous participating media. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1 (2013). doi: 10.1109/TPAMI.2013.9
[76] Huang, Y. Y. et al. Structured-light modulation analysis technique for contamination and defect detection of specular surfaces and transparent objects. Optics Express 27, 37721-37735 (2019). doi: 10.1364/OE.27.037721
[77] Guo, H. Y., Zhou, H. W. & Banerjee, P. P. Use of structured light in 3D reconstruction of transparent objects. Applied Optics 61, B314-B324 (2022). doi: 10.1364/AO.444708
[78] Trivedi, V. et al. Shape measurement of phase objects using fringe projection technique. Proceedings of SPIE 12618, Optical Measurement Systems for Industrial Inspection XIII. Munich: SPIE, 2023, 126182S.
[79] Heredia Ortiz, M. E. Novel developments of Moiré techniques for industrial applications (University of Sheffield, 2004).
[80] Xu, D. & Liechti, K. M. Bulge testing transparent thin films with moiré deflectometry. Experimental Mechanics 50, 217-225 (2010). doi: 10.1007/s11340-009-9291-0
[81] Ri, S. & Muramatsu, T. A simple technique for measuring thickness distribution of transparent plates from a single image by using the sampling moiré method. Measurement Science and Technology 21, 025305 (2010). doi: 10.1088/0957-0233/21/2/025305
[82] Thakur, M., Tay, C. J. & Quan, C. G. Surface profiling of a transparent object by use of phase-shifting Talbot interferometry. Applied Optics 44, 2541-2545 (2005). doi: 10.1364/AO.44.002541
[83] Meziane, R., Meguellati, S. & Messagier, M. Precision inspection of transparent component quality. The International Journal of Advanced Manufacturing Technology 125, 1731-1741 (2023). doi: 10.1007/s00170-022-10774-3
[84] Bhattacharya, J. C. Measurement of the refractive index using the Talbot effect and a moire technique. Applied Optics 28, 2600-2604 (1989). doi: 10.1364/AO.28.002600
[85] Samanta, K. & Joseph, J. An overview of structured illumination microscopy: recent advances and perspectives. Journal of Optics 23, 123002 (2021). doi: 10.1088/2040-8986/ac3675
[86] Eren, G. et al. Scanning from heating: 3D shape estimation of transparent objects from local surface heating. Optics Express 17, 11457-11468 (2009). doi: 10.1364/OE.17.011457
[87] Mériaudeau, F. et al. “Scanning from heating” and “shape from fluorescence”: two non-conventional imaging systems for 3D digitization of transparent objects. in Depth Map and 3D Imaging Applications: Algorithms and Technologies (eds Malik, A. S. et al. ) (Hershey: IGI Global, 2012), 229-243.
[88] Meriaudeau, F. et al. 3-D scanning of nonopaque objects by means of imaging emitted structured infrared patterns. IEEE Transactions on Instrumentation and Measurement 59 , 2898-2906 (2010).
[89] Gong, X. L. & Bansmer, S. 3-D ice shape measurements using mid-infrared laser scanning. Optics Express 23 , 4908-4926 (2015).
[90] Brahm, A. et al. Non-destructive 3D shape measurement of transparent and black objects with thermal fringes. Proceedings of SPIE 9868, Dimensional Optical Metrology and Inspection for Practical Applications V. Baltimore: SPIE, 2016, 98680C.
[91] Landmann, M. et al. High-resolution sequential thermal fringe projection technique for fast and accurate 3D shape measurement of transparent objects. Applied Optics 60, 2362-2371 (2021). doi: 10.1364/AO.419492
[92] Hlubina, P. Spectral reflectrometry and white-light interferometry used to measure thin films. Proceedings of SPIE 5457, Optical Metrology in Production Engineering. Strasbourg: SPIE, 2004, 756-764.
[93] Sun, C. S. et al. Scanning white-light interferometer for measurement of the thickness of a transparent oil film on water. Applied Optics 44, 5202-5205 (2005). doi: 10.1364/AO.44.005202
[94] Li, M. C., Wan, D. S. & Lee, C. C. Application of white-light scanning interferometer on transparent thin-film measurement. Applied Optics 51, 8579-8586 (2012). doi: 10.1364/AO.51.008579
[95] Leong-Hoï, A. et al. Detection of defects in a transparent polymer with high resolution tomography using white light scanning interferometry and noise reduction. Proceedings of SPIE 9528, Videometrics, Range Imaging, and Applications XIII. Munich: SPIE, 2015, 952807.
[96] Kühnhold, P. et al. Transparent layer thickness measurement using low-coherence interference microscopy. Proceedings of SPIE 9525, Optical Measurement Systems for Industrial Inspection IX. Munich: SPIE, 2015, 95252F.
[97] Hwang, C. H. et al. Inspection of laser ablated transparent conductive oxide thin films by a multifunction optical measurement system. in Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015 (eds Martínez-García, A. et al. ) (Cham: Springer, 2017), 173-179.
[98] Guo, T. et al. Surface measurement through transparent medium using Linnik type white-light spectral interferometer. Proceedings of SPIE 10827, Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018). Shanghai: SPIE, 2018, 1082705.
[99] Bulun, G. et al. Construction of a time-domain full-field OCT for non-contact volumetric layer thickness measurement. Proceedings of SPIE 12618, Optical Measurement Systems for Industrial Inspection XIII. Munich: SPIE, 2013, 126180S.
[100] Guo, T. et al. Surface measurement through transparent medium using Linnik type white-light spectral interferometer. Proceedings of SPIE 10872, Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018). Shanghai: SPIE, 2018, 1082705.
[101] Schnars, U. & Jüptner, W. Direct recording of holograms by a CCD target and numerical reconstruction. Applied Optics 33, 179-181 (1994). doi: 10.1364/AO.33.000179
[102] Kreis, T. in Handbook of Holographic Interferometry 35-219 (Wiley-VCH, 2004).
[103] Kebbel, V. , Hartmann, H. J. & Jueptner, W. P. O. Application of digital holographic microscopy for inspection of micro-optical components. Proceedings of SPIE 4398, Optical Measurement Systems for Industrial Inspection II: Application in Industrial Design. Munich: SPIE, 2001, 189-198.
[104] Kim, M. K. Digital Holographic Microscopy: Principles, Techniques, and Applications. (New York: Springer, 2011), 149-190.
[105] Osten, W. et al. Recent advances in digital holography [Invited]. Applied Optics 53, G44-G63 (2014). doi: 10.1364/AO.53.000G44
[106] Tahara, T. et al. Digital holography and its multidimensional imaging applications: a review. Microscopy 67, 55-67 (2018). doi: 10.1093/jmicro/dfy007
[107] Cuche, E., Bevilacqua, F. & Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Optics Letters 24, 291-293 (1999). doi: 10.1364/OL.24.000291
[108] Kemper, B. & von Bally, G. Digital holographic microscopy for live cell applications and technical inspection. Applied Optics 47, A52-A61 (2008). doi: 10.1364/AO.47.000A52
[109] Kemper, B. et al. Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces. Optics and Lasers in Engineering 46, 499-507 (2008). doi: 10.1016/j.optlaseng.2008.03.007
[110] Picart, P., Mounier, D. & Desse, J. M. High-resolution digital two-color holographic metrology. Optics Letters 33, 276-278 (2008). doi: 10.1364/OL.33.000276
[111] Gabai, H. & Shaked, N. T. Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints. Optics Express 20, 26906-26912 (2012). doi: 10.1364/OE.20.026906
[112] Min, J. W. et al. Optical thickness measurement with single-shot dual-wavelength in-line digital holography. Optics Letters 43, 4469-4472 (2018). doi: 10.1364/OL.43.004469
[113] Kühn, J. et al. Axial sub-nanometer accuracy in digital holographic microscopy. Measurement Science and Technology 19, 074007 (2008). doi: 10.1088/0957-0233/19/7/074007
[114] Turko, N. A. & Shaked, N. T. Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography. Optics Letters 42, 73-76 (2017). doi: 10.1364/OL.42.000073
[115] Li, X. et al. Dual-wavelength real-time simultaneous phase imaging based on off-axis interferometry. Optics and Lasers in Engineering 165, 107565 (2023). doi: 10.1016/j.optlaseng.2023.107565
[116] Mark, A. S. et al. Semiconductor wafer defect detection using digital holography. Proceedings of SPIE 5041, Process and Materials Characterization and Diagnostics in IC Manufacturing. Santa Clara: SPIE, 2003.
[117] Tayebi, B. et al. Transparent stepped phase measurement using two illuminating beams. Proceedings of SPIE 9203, Interferometry XVII: Techniques and Analysis. San Diego: SPIE, 2014, 920306.
[118] Qu, W. J. et al. Transmission digital holographic microscopy based on a beam-splitter cube interferometer. Applied Optics 48, 2778-2783 (2009). doi: 10.1364/AO.48.002778
[119] Ebrahimi, S. et al. Stable and simple quantitative phase-contrast imaging by Fresnel biprism. Applied Physics Letters 112, 113701 (2018). doi: 10.1063/1.5021008
[120] Sun, T. F. et al. Quantitative phase imaging using dual-channel Fresnel bi-prism interference microscope. Proceedings of SPIE 10964, Tenth International Conference on Information Optics and Photonics. Beijing: SPIE, 2018, 109640T.
[121] Monemhaghdoust, Z. et al. Dual wavelength full field imaging in low coherence digital holographic microscopy. Optics Express 19, 24005-24022 (2011). doi: 10.1364/OE.19.024005
[122] Rostykus, M. & Moser, C. Compact lensless off-axis transmission digital holographic microscope. Optics Express 25, 16652-16659 (2017). doi: 10.1364/OE.25.016652
[123] Chhaniwal, V. et al. Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror. Optics Letters 37, 5127-5129 (2012). doi: 10.1364/OL.37.005127
[124] Andrushchak, A. S. et al. Interferometric technique for controlling wedge angle and surface flatness of optical slabs. Optics and Lasers in Engineering 51, 342-347 (2013). doi: 10.1016/j.optlaseng.2012.12.006
[125] Zhang, J. W. et al. A review of common-path off-axis digital holography: towards high stable optical instrument manufacturing. Light: Advanced Manufacturing 2, 23 (2021).
[126] Singh, A. S. G. et al. Lateral shearing digital holographic imaging of small biological specimens. Optics Express 20, 23617-23622 (2012). doi: 10.1364/OE.20.023617
[127] Seo, K. B., Kim, B. M. & Kim, E. S. Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects. Nanoscale Research Letters 9, 471 (2014). doi: 10.1186/1556-276X-9-471
[128] Di, J. L. et al. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry. Applied Optics 55, 7287-7293 (2016). doi: 10.1364/AO.55.007287
[129] Di, J. L. et al. Quantitative and dynamic phase imaging of biological cells by the use of the digital holographic microscopy based on a beam displacer unit. IEEE Photonics Journal 10, 1-10 (2018).
[130] Sun, T. F. et al. Michelson-based lateral shearing interference microscopy for quantitative phase measurement of biological cells. Japanese Journal of Applied Physics 59, 106504 (2020). doi: 10.35848/1347-4065/abb717
[131] Sun, T. F. et al. Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells. Laser Physics 28, 125601 (2018). doi: 10.1088/1555-6611/aae036
[132] Anand, A. et al. Single beam Fourier transform digital holographic quantitative phase microscopy. Applied Physics Letters 104, 103705 (2014). doi: 10.1063/1.4868533
[133] Li, Z. D. et al. Optical measurement of photonic nanostructures based on quantitative phase microscopy. 2023 Photonics & Electromagnetics Research Symposium (PIERS). Prague: IEEE, 2023, 643-648.
[134] Mahajan, S. et al. Highly stable digital holographic microscope using Sagnac interferometer. Optics Letters 40, 3743-3746 (2015). doi: 10.1364/OL.40.003743
[135] Jafarfard, M. R. et al. Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness. Optics Letters 39, 2908-2911 (2014). doi: 10.1364/OL.39.002908
[136] Besaga, V. R. et al. Digital holographic microscopy for sub-µm scale high aspect ratio structures in transparent materials. Optics and Lasers in Engineering 121, 441-447 (2019). doi: 10.1016/j.optlaseng.2019.05.007
[137] Xia, H. T. et al. Non-invasive mechanical measurement for transparent objects by digital holographic interferometry based on iterative least-squares phase unwrapping. Experimental Mechanics 52, 439-445 (2012). doi: 10.1007/s11340-011-9516-x
[138] Madsen, A. E. G. et al. On-axis digital holographic microscopy: Current trends and algorithms. Optics Communications 537, 129458 (2023). doi: 10.1016/j.optcom.2023.129458
[139] Zuo, C. et al. Transport of intensity equation: a tutorial. Optics and Lasers in Engineering 135, 106187 (2020). doi: 10.1016/j.optlaseng.2020.106187
[140] Zheng, G. A., Horstmeyer, R. & Yang, C. H. E. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics 7, 739-745 (2013). doi: 10.1038/nphoton.2013.187
[141] Gerchberg, R. W. & Saxton, W. O. Phase determination from image and diffraction plane pictures in the electrom microscope. Optik (International Journal for Light and Electron Optics) 34, 275-284 (1971).
[142] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik (International Journal for Light and Electron Optics) 35, 237-246 (1972).
[143] Fienup, J. R. Phase retrieval algorithms: a comparison. Applied Optics 21, 2758-2769 (1982). doi: 10.1364/AO.21.002758
[144] Teague, M. R. Deterministic phase retrieval: a Green’s function solution. Journal of the Optical Society of America 73, 1434-1441 (1983). doi: 10.1364/JOSA.73.001434
[145] Zuo, C. et al. Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective. Optics and Lasers in Engineering 71, 20-32 (2015). doi: 10.1016/j.optlaseng.2015.03.006
[146] Barty, A. et al. Quantitative phase tomography. Optics Communications 175, 329-336 (2000). doi: 10.1016/S0030-4018(99)00726-9
[147] Roberts, A. et al. Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy. Optics Letters 27, 2061-2063 (2002). doi: 10.1364/OL.27.002061
[148] Ampem-Lassen, E. et al. Refractive index profiling of axially symmetric optical fibers: a new technique. Optics Express 13, 3277-3282 (2005). doi: 10.1364/OPEX.13.003277
[149] Kou, S. S. et al. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging. Optics Letters 35, 447-449 (2010). doi: 10.1364/OL.35.000447
[150] Waller, L. et al. Transport of intensity phase imaging in a volume holographic microscope. Optics Letters 35, 2961-2963 (2010). doi: 10.1364/OL.35.002961
[151] Zuo, C. et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens. Optics Express 21, 24060-24075 (2013). doi: 10.1364/OE.21.024060
[152] Zuo, C. et al. Noninterferometric single-shot quantitative phase microscopy. Optics Letters 38, 3538-3541 (2013). doi: 10.1364/OL.38.003538
[153] Zuo, C. et al. Boundary-artifact-free phase retrieval with the transport of intensity equation II: applications to microlens characterization. Optics Express 22, 18310-18324 (2014). doi: 10.1364/OE.22.018310
[154] Nguyen, T. et al. Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations. Applied Optics 54, 10443-10453 (2015). doi: 10.1364/AO.54.010443
[155] Zuo, C. et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix. Optics Express 23, 14314-14328 (2015). doi: 10.1364/OE.23.014314
[156] Li, J. J. et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light: Science & Applications 11 , 154 (2022).
[157] Li, P. et al. Separation of three-dimensional scattering effects in tilt-series Fourier ptychography. Ultramicroscopy 158, 1-7 (2015). doi: 10.1016/j.ultramic.2015.06.010
[158] Horstmeyer, R. et al. Diffraction tomography with Fourier ptychography. Optica 3, 827-835 (2016). doi: 10.1364/OPTICA.3.000827
[159] Zuo, C. et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Optics and Lasers in Engineering 128, 106003 (2020). doi: 10.1016/j.optlaseng.2020.106003
[160] Tian, L. & Waller, L. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica 2 , 104-111 (2015).
[161] Urbánek, M. et al. Instrument for thin film diagnostics by UV spectroscopic reflectometry. Surface and Interface Analysis 36, 1102-1105 (2004). doi: 10.1002/sia.1850
[162] Nečas, D. et al. Assessment of non-uniform thin films using spectroscopic ellipsometry and imaging spectroscopic reflectometry. Thin Solid Films 571, 573-578 (2014). doi: 10.1016/j.tsf.2013.12.036
[163] Ohlídal, I. et al. Combination of spectroscopic ellipsometry and spectroscopic reflectometry with including light scattering in the optical characterization of randomly rough silicon surfaces covered by native oxide layers. Surface Topography: Metrology and Properties 7, 045004 (2019). doi: 10.1088/2051-672X/ab359d
[164] Bahrenberg, L. et al. Characterization of nanoscale gratings by spectroscopic reflectometry in the extreme ultraviolet with a stand-alone setup. Optics Express 28, 20489-20502 (2020). doi: 10.1364/OE.396001
[165] Joo, K. -N. & Park, H. -M. Recent Progress on Optical Tomographic Technology for Measurements and Inspections of Film Structures. Micromachines 13 , 1074 (2022).
[166] Miks, A., Novak, J. & Novak, P. Analysis of method for measuring thickness of plane-parallel plates and lenses using chromatic confocal sensor. Applied Optics 49, 3259-3264 (2010). doi: 10.1364/AO.49.003259
[167] Hillenbrand, M. et al. Parallelized chromatic confocal sensor systems. Proceedings of SPIE 8788, Optical Measurement Systems for Industrial Inspection VIII. Munich: SPIE, 2013, 87880V.
[168] Fu, S. W. et al. In-situ measurement of surface roughness using chromatic confocal sensor. Procedia CIRP 94, 780-784 (2020). doi: 10.1016/j.procir.2020.09.133
[169] Bai, J. et al. A new method to measure spectral reflectance and film thickness using a modified chromatic confocal sensor. Optics and Lasers in Engineering 154, 107019 (2022). doi: 10.1016/j.optlaseng.2022.107019
[170] Cheng, F. et al. A double-sided surface scanning platform for sapphire substrate quality assessment. Precision Engineering 84, 191-201 (2023). doi: 10.1016/j.precisioneng.2023.08.008
[171] Wakaki, M. et al. Physical Properties and Data of Optical Materials (Boca Raton: CRC Press, 2017), 576.
[172] McCarthy, D. E. Transmittance of optical materials from 0.17 μ to 3.0 μ. Applied Optics 6 , 1896-1898 (1967).
[173] Gillespie, D. T., Olsen, A. L. & Nichols, L. W. Transmittance of optical materials at high temperatures in the 1-μ to 12-μ range. Applied Optics 4, 1488-1493 (1965). doi: 10.1364/AO.4.001488
[174] Good, P. et al. Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators. Solar Energy Materials and Solar Cells 144, 509-522 (2016). doi: 10.1016/j.solmat.2015.09.057
[175] Miller, D. C. et al. Examination of an optical transmittance test for photovoltaic encapsulation materials. Proceedings of SPIE 8825, Reliability of Photovoltaic Cells, Modules, Components, and Systems VI. San Diego: SPIE, 2013, 882509.
[176] Liang, J. et al. High-resolution reconstruction of shortwave infrared polarimetric images using the intensity information of visible images. Applied Optics 58, 4866-4870 (2019). doi: 10.1364/AO.58.004866
[177] Liang, J. et al. Short-wave infrared polarimetric image reconstruction using a deep convolutional neural network based on a high-frequency correlation. Applied Optics 61, 7163-7172 (2022). doi: 10.1364/AO.460752
[178] Miyazaki, D. et al. Surface normal estimation of black specular objects from multiview polarization images. Optical Engineering 56, 041303 (2016). doi: 10.1117/1.OE.56.4.041303
[179] Atkinson, G. A. & Hancock, E. R. Recovery of surface orientation from diffuse polarization. IEEE Transactions on Image Processing 15, 1653-1664 (2006). doi: 10.1109/TIP.2006.871114
[180] Wolff, L. B. Polarization vision: a new sensory approach to image understanding. Image and Vision Computing 15, 81-93 (1997). doi: 10.1016/S0262-8856(96)01123-7
[181] Wolff, L. B. & Boult, T. E. in Physics-Based Vision: Principles and Practice (eds. Wolff, L. B. , Shafer, S. A. & Healey, G. E. ) 424 (A K Peters/CRC Press, New York, 1993).
[182] Wolff, L. B. & Boult, T. E. Constraining object features using a polarization reflectance model. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 635-657 (1991). doi: 10.1109/34.85655
[183] Petrov, N. I. & Porfirev, A. P. Special issue on polarized light and optical systems. Photonics 9, 570 (2022). doi: 10.3390/photonics9080570
[184] Sato, Y. , Wheeler, M. D. & Ikeuchi, K. Object shape and reflectance modeling from observation. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1997, 379-387.
[185] Miyazaki, D. , Kagesawa, M. & Ikeuchi, K. Determining shapes of transparent objects from two polarization images. Proceedings of the IAPR Conference on Machine Vision Applications. Nara: Japan, 2002, 26-31.
[186] Miyazaki, D., Kagesawa, M. & Ikeuchi, K. Transparent surface modeling from a pair of polarization images. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 73-82 (2004). doi: 10.1109/TPAMI.2004.1261080
[187] Miyazaki, D. & Ikeuchi, K. Shape estimation of transparent objects by using inverse polarization ray tracing. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 2018-2030 (2007). doi: 10.1109/TPAMI.2007.1117
[188] Ping, X. X. et al. 3-D reconstruction of textureless and high-reflective target by polarization and binocular stereo vision. Journal of Infrared and Millimeter Waves 36 , 432-438 (2017).
[189] Oldenbourg, R. Polarized light field microscopy: an analytical method using a microlens array to simultaneously capture both conoscopic and orthoscopic views of birefringent objects. Journal of Microscopy 231, 419-32 (2008). doi: 10.1111/j.1365-2818.2008.02053.x
[190] Kim, J. & Ghosh, A. Polarized light field imaging for single-shot reflectance separation. Sensors 18, 3803 (2018). doi: 10.3390/s18113803
[191] Xin, Z. W. et al. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation. Optics Express 26, 4035-4049 (2018). doi: 10.1364/OE.26.004035
[192] Tran, M. T. & Oldenbourg, R. Point spread function of the polarized light field microscope. Journal of the Optical Society of America A 39, 1095-1103 (2022). doi: 10.1364/JOSAA.458034
[193] Klasing, K. et al. Comparison of surface normal estimation methods for range sensing applications. Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009, 3206-3211.
[194] Ma, F. Y. et al. Single-shot 3D reconstruction imaging approach based on polarization properties of reflection lights. Proceedings of SPIE 11898, Holography, Diffractive Optics, and Applications XI. Nantong: SPIE, 2021, 118980F.
[195] Han, P. L. et al. Computational polarization 3D: new solution for monocular shape recovery in natural conditions. Optics and Lasers in Engineering 151, 106925 (2022). doi: 10.1016/j.optlaseng.2021.106925
[196] Keikhosravi, A. et al. Real-time polarization microscopy of fibrillar collagen in histopathology. Scientific Reports 11, 19063 (2021). doi: 10.1038/s41598-021-98600-w
[197] Zhao, J. Y., Monno, Y. & Okutomi, M. Polarimetric multi-view inverse rendering. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 8798-8812 (2023). doi: 10.1109/TPAMI.2022.3232211
[198] Hao, J. L. et al. 3D reconstruction of high-reflective and textureless targets based on multispectral polarization and machine vision. Acta Geodaetica et Cartographica Sinica 47 , 816-824 (2018).
[199] Ren, L. Y. et al. Polarimetric optical imaging: devices, technologies and applications (invited). Acta Photonica Sinica 51, 0851505 (2022). doi: 10.3788/gzxb20225108.0851505
[200] Wu, F. et al. Classification between digs and dust particles on optical surfaces with acquisition and analysis of polarization characteristics. Applied Optics 58, 1073-1083 (2019). doi: 10.1364/AO.58.001073
[201] Wei, W. et al. Surface defect detection in transparent objects using polarized transmission structured light. Acta Optica Sinica 41, 1812002 (2021). doi: 10.3788/AOS202141.1812002
[202] Liang, J., Ren, L. Y. & Liang, R. G. Low-pass filtering based polarimetric dehazing method for dense haze removal. Opt Express 29, 28178-28189 (2021). doi: 10.1364/OE.427629
[203] Liang, J. et al. Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization. Optics Express 23, 26146-26157 (2015). doi: 10.1364/OE.23.026146
[204] Kim, Y. N. et al. Device based in-chip critical dimension and overlay metrology. Optics Express 17, 21336-21343 (2009). doi: 10.1364/OE.17.021336
[205] Mendoza-Galván, A. et al. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films. Journal of Optics 20, 024001 (2018). doi: 10.1088/2040-8986/aa9e7d
[206] Ngo, D. et al. Spectroscopic ellipsometry study of thickness and porosity of the alteration layer formed on international simple glass surface in aqueous corrosion conditions. npj Materials Degradation 2, 20 (2018). doi: 10.1038/s41529-018-0040-7
[207] Thomas, E. L. H. et al. Spectroscopic ellipsometry of nanocrystalline diamond film growth. ACS Omega 2, 6715-6727 (2017). doi: 10.1021/acsomega.7b00866
[208] Hajduk, B., Bednarski, H. & Trzebicka, B. Temperature-dependent spectroscopic ellipsometry of thin polymer films. The Journal of Physical Chemistry B 24, 3229-3251 (2020).
[209] Yoo, S. & Park, Q. H. Spectroscopic ellipsometry for low-dimensional materials and heterostructures. Nanophotonics 11, 15 (2022).
[210] Lee, S. W. et al. Co-axial spectroscopic snap-shot ellipsometry for real-time thickness measurements with a small spot size. Optics Express 28, 25879-25893 (2020). doi: 10.1364/OE.399777
[211] Richter, S. et al. Broadband femtosecond spectroscopic ellipsometry. Review of Scientific Instruments 92, 033104 (2021). doi: 10.1063/5.0027219
[212] Kim, J. & Ghosh, A. Practical acquisition of translucent liquids using polarized transmission imaging. ACM SIGGRAPH 2017 Posters. Los Angeles: ACM, 2017, 84.
[213] Zhang, Y. et al. Refractive index inversion method for metals based on circular polarization detection of light. Optics Communications 535, 129344 (2023). doi: 10.1016/j.optcom.2023.129344
[214] Fuentes-Domínguez, R. et al. Polarization-sensitive super-resolution phononic reconstruction of nanostructures. ACS Photonics 9, 1919-1925 (2022). doi: 10.1021/acsphotonics.1c01607
[215] Kadambi, A. et al. Polarized 3D: synthesis of polarization and depth cues for enhanced 3D sensing. SIGGRAPH 2015: Studio. Los Angeles: ACM, 2015, 23.
[216] Kadambi, A. et al. Polarized 3D: high-quality depth sensing with polarization cues. Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015, 3370-3378.
[217] Garcia, N. M. et al. Surface normal reconstruction using circularly polarized light. Opt Express 23, 14391-406 (2015). doi: 10.1364/OE.23.014391
[218] Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, 43 (2019).
[219] Shao, M. Q. et al. Transparent shape from a single view polarization image. 2023 IEEE/CVF International Conference on Computer Vision (ICCV). Paris: IEEE, 2023, 9243-9252.
[220] Muglikar, M. et al. Event-based shape from polarization. Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023, 1547-1556.