[1] Zong, W. J. et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nature Methods 18, 46-49 (2021). doi: 10.1038/s41592-020-01024-z
[2] Fan, J. T. et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nature Photonics 13, 809-816 (2019). doi: 10.1038/s41566-019-0474-7
[3] Yang, W. J. & Yuste, R. In vivo imaging of neural activity. Nature Methods 14, 349-359 (2017).
[4] Guo, C. L. et al. Miniscope-LFOV: A large-field-of-view, single-cell-resolution, miniature microscope for wired and wire-free imaging of neural dynamics in freely behaving animals. Science Advances 9, eadg3918 (2023). doi: 10.1126/sciadv.adg3918
[5] Yuan, X. Y. et al. A modular hierarchical array camera. Light:Science & Applications 10, 37 (2021).
[6] Pan, M. Y. et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light:Science & Applications 11, 195 (2022).
[7] Urbanska, M. et al. A comparison of microfluidic methods for high-throughput cell deformability measurements. Nature Methods 17, 587-593 (2020). doi: 10.1038/s41592-020-0818-8
[8] Hu, Z. Y. et al. Miniature optoelectronic compound eye camera. Nature Communications 13, 5634 (2022). doi: 10.1038/s41467-022-33072-8
[9] Turtaev, S. et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light:Science & Applications 7, 92 (2018).
[10] Chen, X. et al. Artificial confocal microscopy for deep label-free imaging. Nature Photonics 17, 250-258 (2023). doi: 10.1038/s41566-022-01140-6
[11] Földes-Papp, Z., Demel, U. & Tilz, G. P. Laser scanning confocal fluorescence microscopy: an overview. International Immunopharmacology 3, 1715-1729 (2003). doi: 10.1016/S1567-5769(03)00140-1
[12] Masullo, L. A. et al. An alternative to MINFLUX that enables nanometer resolution in a confocal microscope. Light:Science & Applications 11, 199 (2022).
[13] Shu, Y. F. et al. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX 3, 24 (2022). doi: 10.1186/s43074-022-00071-3
[14] Fan, Y. et al. Efficient synthetic aperture for phaseless Fourier ptychographic microscopy with hybrid coherent and incoherent illumination. Laser & Photonics Reviews 17, 2200201 (2023).
[15] Zheng, G. A., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics 7, 739-745 (2013). doi: 10.1038/nphoton.2013.187
[16] Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437-1443 (2017). doi: 10.1364/OPTICA.4.001437
[17] Fanous, M. J. & Popescu, G. GANscan: continuous scanning microscopy using deep learning deblurring. Light: Science & Applications 11, 265 (2022).
[18] Shen, B. L. et al. Deep learning autofluorescence-harmonic microscopy. Light:Science & Applications 11, 76 (2022).
[19] Gao, Y. H., Yang, F. & Cao, L. C. Pixel super-resolution phase retrieval for lensless on-chip microscopy via accelerated wirtinger flow. Cells 11, 1999 (2022). doi: 10.3390/cells11131999
[20] Yang, F. et al. A four-aperture super-resolution camera based on adaptive regularization parameter tuning. Optics and Lasers in Engineering 165, 107562 (2023). doi: 10.1016/j.optlaseng.2023.107562
[21] Berge, B. & Peseux, J. Variable focal lens controlled by an external voltage: An application of electrowetting. The European Physical Journal E 3, 159-163 (2000). doi: 10.1007/s101890070029
[22] Liu, C. et al. Tunable liquid lenses: emerging technologies and future perspectives. Laser & Photonics Reviews 17, 2300274 (2023).
[23] Cheng, Y. et al. Optical zoom imaging systems using adaptive liquid lenses. Bioinspiration & Biomimetics 16, 041002 (2021).
[24] Ren, H. W. & Wu, S. T. Variable-focus liquid lens. Optics Express 15, 5931-5936 (2007). doi: 10.1364/OE.15.005931
[25] Xu, S., Ren, H. W. & Wu, S. T. Dielectrophoretically tunable optofluidic devices. Journal of Physics D:Applied Physics 46, 483001 (2013). doi: 10.1088/0022-3727/46/48/483001
[26] Liu, C. et al. Continuous optical zoom microscope with extended depth of field and 3D reconstruction. PhotoniX 3, 20 (2022). doi: 10.1186/s43074-022-00066-0
[27] Jiang, Z. et al. Continuous optical zoom microscopy imaging system based on liquid lenses. Optics Express 29, 20322-20335 (2021). doi: 10.1364/OE.432290
[28] Li, L. et al. Zoom microscope objective using electrowetting lenses. Optics Express 24, 2931-2940 (2016). doi: 10.1364/OE.24.002931
[29] Dai, B. et al. Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing. Nature Communications 12, 6458 (2021). doi: 10.1038/s41467-021-26606-z
[30] Cheng, Y. et al. Review of state-of-the-art artificial compound eye imaging systems. Bioinspiration & Biomimetics 14, 031002 (2019).
[31] Zhu, L., Zhang, Y. L. & Sun, H. B. Miniaturising artificial compound eyes based on advanced micronanofabrication techniques. Light:Advanced Manufacturing 2, 7 (2021).
[32] Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95-99 (2013). doi: 10.1038/nature12083
[33] Brady, D. J. et al. Multiscale gigapixel photography. Nature 486, 386-389 (2012). doi: 10.1038/nature11150
[34] Llull, P. et al. Characterization of the AWARE 40 wide-field-of-view visible imager. Optica 2, 1086-1089 (2015).
[35] Son, H. S. et al. Design of a spherical focal surface using close-packed relay optics. Optics Express 19, 16132-16138 (2011). doi: 10.1364/OE.19.016132
[36] Marks, D. L. et al. Microcamera aperture scale in monocentric gigapixel cameras. Applied Optics 50, 5824-5833 (2011). doi: 10.1364/AO.50.005824
[37] Brady, D. J. & Hagen, N. Multiscale lens design. Optics Express 17, 10659-10674 (2009). doi: 10.1364/OE.17.010659
[38] Kim, T. H. & Schnitzer, M. J. Fluorescence imaging of large-scale neural ensemble dynamics. Cell 185, 9-41 (2022). doi: 10.1016/j.cell.2021.12.007
[39] Sun, J. H. et al. Optical design and multi-objective optimization for U-type 2X zoom projection optics. Optics and Lasers in Engineering 48, 411-420 (2010). doi: 10.1016/j.optlaseng.2009.09.008
[40] Liu, C. S., Wang, Z. Y. & Chang, Y. C. Design and characterization of high-performance autofocusing microscope with zoom in/out functions. Applied Physics B 121, 69-80 (2015).
[41] Wang, D. et al. Holographic capture and projection system of real object based on tunable zoom lens. PhotoniX 1, 6 (2020). doi: 10.1186/s43074-020-0004-3
[42] Wang, Z. J. et al. Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing. Biomedical Optics Express 6, 4353-4364 (2015). doi: 10.1364/BOE.6.004353
[43] Liu, C. et al. Real scene acquisition and holographic near-eye display system based on a zoom industrial endoscope. Optics Express 30, 33170-33181 (2022). doi: 10.1364/OE.468267
[44] Berge, B. Electrocapillarity and wetting of insulator films by water. Comptes Rendus de l'Académie des Sciences 317, 157-163 (1993).
[45] Mikš, A. & Novák, J. Method of calculation of internal parameters of liquid lens. Applied Optics 56, 3277-3280 (2017). doi: 10.1364/AO.56.003277
[46] Barnes, C. et al. PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics 28, 24 (2009).
[47] Zhang, Y. et al. Multi-focus light-field microscopy for high-speed large-volume imaging. PhotoniX 3, 30 (2022). doi: 10.1186/s43074-022-00076-y
[48] Wang, D. et al. Large viewing angle holographic 3D display system based on maximum diffraction modulation. Light:Advanced Manufacturing 4, 18 (2023).
[49] Yamada, M., Nakashima, M. & Seki, M. Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Analytical Chemistry 76, 5465-5471 (2004). doi: 10.1021/ac049863r
[50] Zhang, Y. Z., Wang, X. Y. & Qu, B. Three-frame difference algorithm research based on mathematical morphology. Procedia Engineering 29, 2705-2709 (2012). doi: 10.1016/j.proeng.2012.01.376