[1] Huang, D. et al. Optical coherence tomography. Science 254.5035, 1178–1181 (1991).
[2] Wieser, W., Biedermann, B. R., Klein, T., Eigenwillig, C. M. & Huber, R. Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt. Express 18.14, 14685–14704 (2010).
[3] Swanson, E. A. & Fujimoto, J. G. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact[Invited]. Biomed. Optics Express 8.3, 1638–1664 (2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5480569/?lang=fr
[4] Dubois, A. et al. Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors. J. Biomed. Opt. 23.10, 106007-1–106007-9 (2018). http://www.ncbi.nlm.nih.gov/pubmed/30353716
[5] de Boer, J. F., Leitgeb, R. & Wojtkowski, M. Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT[Invited]. Biomed. Opt. Express 8.7, 3248–3280 (2017). http://www.ncbi.nlm.nih.gov/pubmed/28717565
[6] Leitgeb, R., Hitzenberger, C. & Fercher, A. Performance of fourier domain vs time domain optical coherence tomography. Opt. Express 11.8, 889–894 (2003). http://www.opticsinfobase.org/abstract.cfm?id=71990
[7] Yun, S. H., Tearney, G. J., Bouma, B. E., Park, B. H. & de Boer, J. F. High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength. Opt. Express 11.26, 3598–3604 (2003). doi: 10.1364/oe.11.003598
[8] Choma, M. A., Sarunic, M. V., Yang, C. & Izatt, J. A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11.18, 2183–2189 (2003). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-18-2183
[9] de Boer, J. F. et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28.21, 2067–2069 (2003). http://www.opticsinfobase.org/abstract.cfm?uri=ol-28-21-2067
[10] Ho, J. et al. Documentation of intraretinal retinal pigment epithelium migration via high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 118.4, 687–693 (2011). http://europepmc.org/articles/PMC3070873
[11] Israelsen, N. M. et al. The value of ultrahigh resolution OCT in dermatology - delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs. Biomedical. Opt. Express 9.5, 2240–2265 (2018). http://europepmc.org/abstract/MED/29760984
[12] Yao, X. et al. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT. Lasers Surg. Med. 49.3, 258–269 (2017). doi: 10.1002/lsm.22654
[13] Ahsen, O. O. et al. Assessment of Barretta's esophagus and dysplasia with ultrahigh-speed volumetric en face and cross-sectional optical coherence tomography. Endoscopy 51.04, 355–359 (2019). http://www.researchgate.net/publication/327922160_Assessment_of_Barrett's_esophagus_and_dysplasia_with_ultrahigh-speed_volumetric_en_face_and_cross-sectional_optical_coherence_tomography
[14] The Scientist: Top Innovations of 2008. Accessed 18 Mar 2020. https://www.the-scientist.com/uncategorized/the-scientist-top-innovations-of-2008-44572.15
[15] Dubois, A. et al. Line-field confocal time-domain optical coherence tomography with dynamic focusing. Opt. Express 26.26, 33534–33542 (2018).
[16] Jensen, M. et al. Noise of supercontinuum sources in spectral domain optical coherence tomography. J. Opt. Soc. Am. B 36.2, A154–A160 (2019). http://www.researchgate.net/publication/330635680_Noise_of_supercontinuum_sources_in_spectral_domain_optical_coherence_tomography
[17] Davis, A., Levecq, O., Azimani, H., Siret, D. & Dubois, A. Simultaneous dual-band line-field confocal optical coherence tomography: application to skin imaging. Biomed. Opt. Express 10.2, 694–706 (2019). http://www.ncbi.nlm.nih.gov/pubmed/30800509
[18] Harper, D. J. et al. White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina. Biomed. Opt. Express 9.5, 2115–2129 (2018). http://europepmc.org/articles/PMC5946775
[19] Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78.4, 1135–1184 (2006).
[20] Heidt, A. M. Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J. Opt. Soc. Am. B 27.3, 550–559 (2010). http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-27-3-550
[21] Heidt, A. M. et al. Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Opt. Express 19.4, 3775–3787 (2011). http://europepmc.org/abstract/MED/21369202
[22] Klimczak, M., Soboń, G., Kasztelanic, R., Abramski, K. M. & Buczyński, R. Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser. Sci. Rep. 6.19284, 1–14 (2016). http://europepmc.org/abstract/MED/26759188
[23] Gonzalo, I. B., Engelsholm, R. D., Sørensen, M. P. & Bang, O. Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation. Sci. Rep. 8.6579, 1–13 (2018). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920076/
[24] Heidt, A. M., Feehan, J. S., Price, J. H. V. & Feurer, T. Limits of coherent supercontinuum generation in normal dispersion fibers. J. Opt. Soc. Am. B 34.4, 764–775 (2017).
[25] Genier, E. et al. Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers. J. Opt. Soc. Am. B 36.2, A161–A167 (2019). http://arxiv.org/abs/1902.01273
[26] Kawagoe, H., Yamanaka, M., Makita, S., Yasuno, Y. & Nishizawa, N. Full-range ultrahigh-resolution spectral-domain optical coherence tomography in 1.7 mm wavelength region for deep-penetration and high-resolution imaging of turbid tissues. Appl. Phys. Express 9.12, 127002-1–127002-4 (2016). http://ci.nii.ac.jp/naid/150000113351
[27] Takayanagi, J. & Nishizawa, N. Generation of widely and flatly broadened, low-noise and high-coherence supercontinuum in all-fiber system. Jpn. J. Appl. Phys. 45.16, L441–L443 (2006). http://ci.nii.ac.jp/naid/150000014037
[28] Finot, C., Kibler, B., Provost, L. & Wabnitz, S. Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25.11, 1938–1948 (2008). http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-25-11-1938
[29] Yuan, W. et al. Optimal operational conditions for supercontinuumbased ultrahigh-resolution endoscopic OCT imaging. Opt. Lett. 41.2, 250–253 (2016). http://www.ncbi.nlm.nih.gov/pubmed/26766686
[30] Sorin, W. & Baney, D. A simple intensity noise reduction technique for optical low-coherence reflectometry. IEEE Photon. Technol. Lett. 4.12, 1404–1406 (1992). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=180591
[31] Barroso, Á. et al. Durable 3D test standards from mouse retina for performance testing of high-resolution optical coherence tomography systems. Clinical and Preclinical Optical Diagnostics Ⅱ. Optical Society of America, 2019, 11078–66.
[32] Huber, R., Wojtkowski, M., Fujimoto, J. G., Jiang, J. Y. & Cable, A. E. Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt. Express 13.26, 10523–10538 (2005).
[33] Huber, R., Wojtkowski, M. & Fujimoto, J. G. Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express 14.8, 3225–3237 (2006). http://www.ncbi.nlm.nih.gov/pubmed/19516464
[34] di Ruffano, L. F. et al. Optical coherence tomography for diagnosing skin cancer in adults. Cochrane Database Syst. Rev. 12. CD013189, 1–106 (2018).
[35] Genier, E. et al. Ultra-flat, low-noise, and linearly polarized fiber supercontinuum source covering 670-1390 nm. Opt. Lett. 46.8, 1820–1823 (2021). http://www.researchgate.net/publication/349933699_An_ultra-flat_low-noise_and_linearly_polarized_fiber_supercontinuum_source_covering_670_nm-1390_nm
[36] Diddams, S. & Diels, J. -C. Dispersion measurements with white-light interferometry. J. Opt. Soc. Am. B 13.6, 1120–1129 (1996). http://www.opticsinfobase.org/abstract.cfm?uri=josab-13-6-1120
[37] Lafargue, C. et al. Direct detection of optical rogue wave energy statistics in supercontinuum generation. Electron. Lett. 45.4, 217–219 (2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4784317
[38] Rao, D. S. S. et al. Ultralow-noise supercontinuum generation with a flat near-zero normal dispersion fiber. Opt. Lett. 44.9, 2216–2219 (2019). http://www.ncbi.nlm.nih.gov/pubmed/31042187
[39] Agrawal, A., Pfefer, T. J., Woolliams, P. D., Tomlins, P. H. & Nehmetallah, G. Methods to assess sensitivity of optical coherence tomography systems. Biomed. Opt. Express 8.2, 902–917 (2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5330563/table/t006/