[1] Baffou, G. & Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898–3907 (2014). doi: 10.1039/c3cs60364d
[2] Tian, Y. & Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 16, 1810–1811 (2004).
[3] Tian, Y. & Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005). doi: 10.1021/ja042192u
[4] Mubeen, S., Hernandez-Soza, G., Moses, D., Lee, J. & Moskovits, M. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett. 11, 5548–5552 (2011). doi: 10.1021/nl203457v
[5] Lee, J., Mubeen, S., Li, X., Stucky, G. D. & Moskovits, M. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 12, 5014–5019 (2012). doi: 10.1021/nl302796f
[6] Knight, M. W., Sobhani, A., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011). doi: 10.1126/science.1203056
[7] Ingram, D. B. & Linic, S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133, 5202–5205 (2011). doi: 10.1021/ja200086g
[8] Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011). doi: 10.1038/nchem.1032
[9] Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013). doi: 10.1021/nl303940z
[10] Gomes Silva, C., Juárez, R., Marino, T., Molinari, R. & García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133, 595–602 (2011). doi: 10.1021/ja1086358
[11] Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U. Locally oxidized silicon surface-plasmon schottky detector for telecom regime. Nano Lett. 11, 2219–2224 (2011). doi: 10.1021/nl200187v
[12] Nishijima, Y., Ueno, K., Yokota, Y., Murakoshi, K. & Misawa, H. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett. 1, 2031 (2010). doi: 10.1021/jz1006675
[13] Takahashi, Y. & Tatsuma, T. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Appl. Phys. Lett. 11, 5426–5430 (2011).
[14] Wang, F. & Melosh, N. A. Plasmonic energy collection through hot carrier extraction. Nano Lett. 11, 5426–5430 (2011). doi: 10.1021/nl203196z
[15] Narang, P., Sundararaman, R. & Atwater, H. A. Plasmonic hot carrier dynamics in solid-state andchemical systems for energy conversion. Nanophotonics 5, 96–111 (2016). doi: 10.1515/nanoph-2016-0007
[16] Khurgin, J. B. Fundamental limits of hot carrier injection from metal in nanoplasmonics. Nanophotonics 9, 453–471 (2020). doi: 10.1515/nanoph-2019-0396
[17] Khurgin, J. B. & Levy, U. Generating hot carriers in plasmonic nanoparticles: when quantization does matter? ACS Photonics 7, 547–553 (2020). doi: 10.1021/acsphotonics.9b01774
[18] Bauer, M., Marienfeld, A. & Aeschlimann, M. Hot electron lifetimes in metals probed by time-resolved two-photon photoemission. Prog. Surf. Sci. 90, 319–376 (2015). doi: 10.1016/j.progsurf.2015.05.001
[19] Boerigter, C., Aslam, U. & Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10, 6108–6115 (2016). doi: 10.1021/acsnano.6b01846
[20] Seemala, B. et al. Plasmon-mediated catalytic O2 dissociationon Ag nanostructures: hot electrons or near fields? ACS Energy Lett. 4, 1803–1809 (2019). doi: 10.1021/acsenergylett.9b00990
[21] Aslam, U., Govind Rao, V., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018). doi: 10.1038/s41929-018-0138-x
[22] Sivan, Y., Wai Un, I. & Dubi, Y.Thermal effect—an alternative mechanism for plasmonic assisted photo-catalysis. Chem. Sci 11, 5017–5027 (2020). doi: 10.1039/C9SC06480J
[23] Dubi, Y. & Sivan, Y. "Hot" electrons in metallic nanostructures—non-thermal carriers or heating? Light.: Sci. Appl. 8, 89 (2019). doi: 10.1038/s41377-019-0199-x
[24] Sivan, Y., Wai Un, I. & Dubi, Y. Assistance of metal nanoparticles in photocatalysis—nothing more than a classical heat source. Faraday Discuss. 214, 215–233 (2019). doi: 10.1039/C8FD00147B
[25] Adleman, J. R., Boyd, D. A., Goodwin, D. G. & Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009). doi: 10.1021/nl902711n
[26] Li, K. et al. Balancing near-field enhancement, absorption, and scattering for effective antenna reactor plasmonic photocatalysis. Nano Lett. 17, 3710–3717 (2017). doi: 10.1021/acs.nanolett.7b00992
[27] Maley, M., Hill, J. W., Saha, P., Walmsley, J. D. & Hill, C. M. The role of heating in the electrochemical response of plasmonic nanostructures under illumination. J. Phys. Chem. C. https://doi.org/10.1021/acs.jpcc.9b01479 (2019).
[28] Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014). doi: 10.1021/ja411017b
[29] Baffou, G., Rigneault, H., Marguet, D. & Jullien, L. A critique of methods for temperature imaging in single cells. Nat. Methods 11, 899–901 (2014). doi: 10.1038/nmeth.3073
[30] Baffou, G., Rigneault, H., Marguet, D. & Jullien, L. Reply to: "Validating subcellular thermal changes revealed by fluorescent thermosensors" and "The 105 gap issue between calculation and measurement in single-cell thermometry". Nat. Methods 12, 803 (2015). doi: 10.1038/nmeth.3552
[31] Christopher, P., Xin, H. L., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012). doi: 10.1038/nmat3454
[32] Olsen, T. & Schiotz, J. Origin of power laws for reactions at metal surfaces mediated by hot electrons. Phys. Rev. Lett. 103, 238301 (2009). doi: 10.1103/PhysRevLett.103.238301
[33] Busch, D. G. & Ho, W. Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry. Phys. Rev. Lett. 77, 1338–1341 (1996). doi: 10.1103/PhysRevLett.77.1338
[34] Gadzuk, J. W. Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption. Chem. Phys. 251, 87–97 (2000). doi: 10.1016/S0301-0104(99)00299-2
[35] Hyun Kim, K., Watanabe, K., Mulugeta, D., Freund, H. J. & Menzel, D. Enhanced photoinduced desorption from metal nanoparticles by photoexcitation of confined hot electrons using femtosecond laser pulses. Phys. Rev. Lett. 11, 1044–1050 (2011).
[36] Hu, C. et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc. 141, 7807 (2019). doi: 10.1021/jacs.9b01375
[37] Misewich, J. A., Heinz, T. F. & Newns, D. M. Desorption induced by multiple electronic transitions. Phys. Rev. Lett. 68, 3737–3740 (1992). doi: 10.1103/PhysRevLett.68.3737
[38] Zhan, C. et al. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Natcommun 10, 2671 (2019).
[39] Wang, Y. et al. Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures. Faraday Discuss. 214, 325 (2019). doi: 10.1039/C8FD00141C
[40] C. Zhang et al. Al–Pd nanodisk heterodimers as antenna–reactor photocatalysts. Nano Lett. 16, 6677–6682 (2016).
[41] Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic phototcatalysis. Science 362, 69–72 (2018). doi: 10.1126/science.aat6967
[42] Kamarudheen, R., Catellanos, G. W., Kamp, L. J. P., Clercx, H. J. H. & Baldi, A. Quantifying photothermal and hot charge carrier effects in plasmon-driven nanoparticle syntheses. ACS Nano 12, 8447–8455 (2018). doi: 10.1021/acsnano.8b03929
[43] Baffou, G. et al. Photoinduced heating of nanoparticle arrays. ACS Nano 7, 6478–6488 (2013). doi: 10.1021/nn401924n
[44] Hu, C. et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc. 141, 7807 (2019). doi: 10.1021/jacs.9b01375
[45] Li, C. et al. Long-range plasmon field and plasmoelectric effect on catalysis revealed by shell-thickness-tunable pinhole-free Au@SiO2 core–shell nanoparticles: a case study of p-nitrophenol reduction. ACS Catal. 7, 5391–5398 (2017). doi: 10.1021/acscatal.7b01053
[46] Shalaev, V. M., Douketis, C., Stuckless, J. T. & Moskovits, M. Light-induced kinetic effects in solids. Phys. Rev. B 53, 11388–11402 (1996). doi: 10.1103/PhysRevB.53.11388
[47] Govorov, A. O. et al. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84 (2006). doi: 10.1007/s11671-006-9015-7
[48] Sivan, Y., Baraban, J., Wai Un, I. & Dubi, Y. Comment on "Quantifying hot carrier and thermal contributions in plasmonic photocatalysis". Science 364, eaaw9367 (2019). doi: 10.1126/science.aaw9367
[49] Zhou, L. et al. Response to comment on "Quantifying hot carrier and thermal contributions in plasmonic photocatalysis". Science 364, eaaw9545 (2019). doi: 10.1126/science.aaw9545
[50] Sivan, Y., Baraban, J. & Dubi, Y. Eppur si riscalda – and yet, it (just) heats up: further comments on "Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Preprint at https://arxiv.org/abs/1907.04773 (2019).
[51] Shahsafi, A. et al. Wide-angle spectrally selective absorbers and thermal emitters based on inverse opals. ACS Photonics 6, 2607–2611 (2019). doi: 10.1021/acsphotonics.9b00922
[52] Tagliabue, G., Eghlidi, H. & Poulikakos, D. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber. Sci. Rep. 4, 7181 (2014).
[53] Virk, M., Xiong, K., Svedendahl, M., Käll, M. & Dahlin, A. B. A thermal plasmonic sensor platform: resistive heating of nanohole arrays. Nano Lett. 14, 3544–3549 (2014). doi: 10.1021/nl5011542
[54] Hsun Hung, W., Aykol, M., Valley, D., Hou, W. & Cronin, S. B. Plasmon resonant enhancement of carbon monoxide catalysis. Nanoletters 10, 1314–1318 (2010). doi: 10.1021/nl9041214
[55] Neumann, O. et al. Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013). doi: 10.1021/nn304948h
[56] Zhang, X. et al. Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett. 18, 1714–1723 (2018). doi: 10.1021/acs.nanolett.7b04776
[57] Schaadt, D. M., Feng, B. & Yu, E. T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86, 063106 (2005). doi: 10.1063/1.1855423
[58] Hägglund, C., Zäch, M., P, G. & Kasemo, B. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl. Phys. Lett. 92, 053110 (2008). doi: 10.1063/1.2840676
[59] Chen, S. C. et al. Toward omnidirectional light absorption by plasmonic effect for high-efficiency flexible nonvacuum Cu(In, Ga)Se2 thin film solar cells. ACS Nano 8, 9341–9348 (2014). doi: 10.1021/nn503320m
[60] Tagliabue, G. et al. Quantifying the role of surface plasmon excitationand hot carrier transport in plasmonic devices. Nat. Commun. 9, 3394 (2018). doi: 10.1038/s41467-018-05968-x
[61] Pillai, S. & Green, M. A. Plasmonics for photovoltaic applications. Sol. Energy Mater. Sol. Cells 94, 1481–1486 (2010). doi: 10.1016/j.solmat.2010.02.046
[62] Uneo, K., Oshikiri, T., Sun, Q., Shi, X. & Misawa, H. Solid-state plasmonic solar cells. Chem. Rev. 118, 2955–2993 (2018). doi: 10.1021/acs.chemrev.7b00235
[63] Vernon, S. M. & Anderson, W. A. Temperature effects in Schottky-barrier silicon solar cells. Appl. Phys. Lett. 26, 707 (1975). doi: 10.1063/1.88044
[64] Meneses-Rodríguez, D., Horley, P. P., González-Hernández, J., Vorobiev, Y. V. & Gorley, P. N. Photovoltaic solar cells performance at elevated temperatures. Sol. Energy 78, 243–250 (2005). doi: 10.1016/j.solener.2004.05.016
[65] Baffou, G., Polleux, J., Rigneault, H. & Monneret, S. Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination. J. Phys. Chem. C 118, 4890 (2014). doi: 10.1021/jp411519k
[66] Namura, K., Nakajima, K. & Suzuki, M. Quasi-stokeslet Induced by thermoplasmonic Marangoni effect around a water vapor microbubble. Sci. Rep. 7, 45776 (2017). doi: 10.1038/srep45776
[67] Metwally, K., Mensah, S. & Baffou, G. Isosbestic thermoplasmonic nanostructures. ACS Photonics 4, 1544–1551 (2018). doi: 10.1021/acsphotonics.7b00329
[68] Verschuuren, M. A., Megens, M., Ni, Y., van Sprang, H. & Polman, A. Large area nanoimprint by substrate conformal imprint lithography (SCIL). Adv. Opt. Technol. 6, 243–264 (2017).
[69] Fredriksson, H. et al. Hole–Mask colloidal lithography. Adv. Mater. 19, 4297–4302 (2007). doi: 10.1002/adma.200700680
[70] Syrenova, S., Wadell, C. & Langhammer, C. Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas. Nano Lett. 14, 2655–2663 (2014). doi: 10.1021/nl500514y
[71] Liu, S. et al. In situ plasmonic nanospectroscopy of the CO oxidation reaction over single Pt nanoparticles. ACS Nano 13, 6090–6100 (2019). doi: 10.1021/acsnano.9b02876
[72] Bu, Y., Niemantsverdriet, J. W. H. & Fredriksson, H. O. A. Cu model catalyst dynamics and CO oxidation kinetics studied by simultaneous in situ UV–Vis and mass spectroscopy. ACS Catal. 6, 2867–2876 (2016). doi: 10.1021/acscatal.5b02861
[73] Quintanilla, M. & Liz-Marzán, L. M. Guiding rules for selecting a nanothermometer. Nano Today 19, 126–145 (2018). doi: 10.1016/j.nantod.2018.02.012
[74] Baffou, G. Thermoplasmonics: Heating Metal Nanoparticules Using Light Ch. 4 (Cambridge Unversity Press, 2017).
[75] Hu, S. et al. Quantifying surface temperature of thermoplasmonic nanostructures. J. Am. Chem. Soc. 140, 13680–13686 (2018). doi: 10.1021/jacs.8b06083
[76] Carattino, A., Caldarola, M. & Orrit, M. Gold nanoparticles as absolute nanothermometers. Nano Lett. 18, 874–880 (2018). doi: 10.1021/acs.nanolett.7b04145
[77] Savchuk, O. A. et al. Ho, Yb:KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry. J. Phys. Chem. C 119, 18546–18558 (2015). doi: 10.1021/acs.jpcc.5b03766
[78] Rohani, S. et al. Enhanced luminescence, collective heating, and nanothermometry in an ensemble system composed of lanthanide-doped upconverting nanoparticles and gold nanorods. Adv. Opt. Mater. 3, 1606–1613 (2015). doi: 10.1002/adom.201500380
[79] Bonn, M. et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999). doi: 10.1126/science.285.5430.1042
[80] Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017). doi: 10.1038/ncomms14542
[81] Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013). doi: 10.1126/science.1231631
[82] Zhou, L. et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 5, 61–70 (2020). doi: 10.1038/s41560-019-0517-9
[83] Baffou, G., Quidant, R. & Garcia de Abajo, F. J. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709 (2010). doi: 10.1021/nn901144d
[84] Keller, E. L. & Frontiera, R. R. Ultrafast nanoscale raman thermometry proves heating is not a primary mechanism for plasmon-driven photocatalysis. ACS Nano 12, 5848–5855 (2018). doi: 10.1021/acsnano.8b01809
[85] Hrelescu, C. et al. DNA melting in gold nanostove clusters. J. Phys. Chem. C 114, 7401–7411 (2010). doi: 10.1021/jp9097167
[86] Jin, H., Lin, G., Bai, L., Zeiny, A. & Wen, D.Steam generation in a nanoparticle-based solar receiver. Nano Energy 28, 397–406 (2016). doi: 10.1016/j.nanoen.2016.08.011
[87] Richardson, H. H., Carlson, M. T., Tandler, P. J., Hernandez, P. & Govorov, A. O. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 9, 1139–1146 (2009). doi: 10.1021/nl8036905
[88] Baffou, G. & Rigneault, H. Femtosecond-pulsed optical heating of gold nanoparticles. Phys. Rev. B 84, 035415 (2011). doi: 10.1103/PhysRevB.84.035415
[89] Swearer, D. F. et al. Heterometallic antenna reactor complexes for photocatalysis. Proc. Natl Acad. Sci. USA 113, 8916–8920 (2016). doi: 10.1073/pnas.1609769113
[90] Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015). doi: 10.1126/science.aac5443
[91] Bardey, S. et al. Plasmonic photocatalysis applied to solar fuels. Faraday Discuss. 214, 417 (2019). doi: 10.1039/C8FD00144H
[92] Yen, C. W. & El-Sayed, M. A. Plasmonic field effect on the hexacyanoferrate (III)—thiosulfate electron transfer catalytic reaction on gold nanoparticles: electromagnetic or thermal? J. Phys. Chem. C 113, 19585–19590 (2009). doi: 10.1021/jp905186g
[93] Bora, T., Zoepfl, D. & Dutta, J. Importance of plasmonic heating on visible light driven photocatalysis of gold nanoparticle decorated zinc oxide nanorods. Sci. Rep. 6, 26913 (2016). doi: 10.1038/srep26913
[94] Baffou, G. Thermoplasmonics. Heating Metal Nanoparticles Using Light (Cambridge University Press, 2017).
[95] Yu, Y., Sundaresan, V. & Willets, K. A. Hot carriers versus thermal effects: resolving the enhancement mechanisms for plasmon mediated photoelectrochemical reactions. J. Phys. Chem. C 122, 5040–5048 (2018). doi: 10.1021/acs.jpcc.7b12080
[96] Sarhan, R. M. et al. The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol. Sci. Rep. 9, 3060 (2019). doi: 10.1038/s41598-019-38627-2
[97] Li, X., Everitt, H. O. & Liu, J. Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts. Nano Res. 12, 1906–1911 (2019). doi: 10.1007/s12274-019-2457-x
[98] Jain, P. K. Taking the heat off of plasmonic chemistry. J. Phys. Chem. C 123, 24347–24351 (2019). doi: 10.1021/acs.jpcc.9b08143
[99] Zhang, Q. et al. Photothermal effect, local field dependence, and charge carrier relaying species in plasmon-driven photocatalysis: a case study of aerobic nitrothiophenol coupling reaction. J. Phys. Chem. C 123, 26695–26704 (2019). doi: 10.1021/acs.jpcc.9b08181
[100] Rodio, M. et al. Experimental evidence for nonthermal contributions to plasmon-enhanced electrochemical oxidation reactions. ACS Catal. 10, 2345 (2020). doi: 10.1021/acscatal.9b05401
[101] Ou, W. et al. Thermal and nonthermal effects in plasmon-mediated electrochemistry at nanostructured Ag electrodes. Angew. Chem. Int. Ed. 59, 1 (2020). doi: 10.1002/anie.201914874
[102] Schorr, N. B., Counihan, M. J., Bhargava, R. & Rodríguez-Loṕez, J. Impact of plasmonic photothermal effects on the reactivity of Au nanoparticle modified graphene electrodes visualized using scanning electrochemical microscopy. Anal. Chem. 92, 3666–3673 (2020). doi: 10.1021/acs.analchem.9b04754
[103] Sivan, Y., Baraban, J. & Dubi, Y. Experimental practices required to isolatethermal effects in plasmonic photo-catalysis:lessons from recent experiments. OSA Contin. 3, 483 (2020). doi: 10.1364/OSAC.376809
[104] Baffou, G., Quidant, R. & Girard, C. Thermoplasmonics modeling: a Green's function approach. Phys. Rev. B 82, 165424 (2010). doi: 10.1103/PhysRevB.82.165424