[1] Bi, Y. et al. Near-resonance enhanced label-free stimulated Raman scattering microscopy with spatial resolution near 130 nm. Light Sci. Appl. 7, 81 (2018). doi: 10.1038/s41377-018-0082-1
[2] Duncan, M. D., Reintjes, J. & Manuccia, T. J. Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7, 350-352 (1982). doi: 10.1364/OL.7.000350
[3] Cheng, J.-X. & Xie, X. S. Coherent Raman Scattering Microscopy. (CRC Press, Boca Raton, FL, 2013).
[4] Gong, L. & Wang, H. Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study. Phys. Rev. A 90, 013818 (2014). doi: 10.1103/PhysRevA.90.013818
[5] Kim, D. et al. Selective suppression of stimulated raman scattering with another competing stimulated Raman scattering. J. Phys. Chem. Lett. 8, 6118-6123 (2017). doi: 10.1021/acs.jpclett.7b02752
[6] Kim, H., Bryant, G. W. & Stranick, S. J. Superresolution four-wave mixing microscopy. Opt. Express 20, 6042-6051 (2012). doi: 10.1364/OE.20.006042
[7] Silva, W. R., Graefe, C. T. & Frontiera, R. R. Toward label-free super-resolution microscopy. ACS Photon. 3, 79-86 (2016). doi: 10.1021/acsphotonics.5b00467
[8] Masia, F., Langbein, W., Watson, P. & Borri, P. Resonant four-wave mixing of gold nanoparticles for three-dimensional cell microscopy. Opt. Lett. 34, 1816-1818 (2009). doi: 10.1364/OL.34.001816
[9] Hudson, B., Hetherington, W., Cramer, S., Chabay, I. & Klauminzer, G. K. Resonance enhanced coherent anti-Stokes Raman scattering. Proc. Natl Acad. Sci. USA 73, 3798 (1976). doi: 10.1073/pnas.73.11.3798
[10] Shi, L. et al. Electronic resonant stimulated raman scattering micro-spectroscopy. J. Phys. Chem. B 122, 9218-9224 (2018). doi: 10.1021/acs.jpcb.8b07037