[1] Gu, M., Zhang, Q. M. & Lamon, S. Nanomaterials for optical data storage. Nat. Rev. Mater. 1, 16070 (2016). doi: 10.1038/natrevmats.2016.70
[2] Kimel, A. V. & Li, M. Writing magnetic memory with ultrashort light pulses. Nat. Rev. Mater. 4, 189-200 (2019). doi: 10.1038/s41578-019-0086-3
[3] Zhang, Q. M. et al. High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites. Nat. Commun. 9, 1183 (2018). doi: 10.1038/s41467-018-03589-y
[4] Gu, M., Li, X. P. & Cao, Y. Y. Optical storage arrays: a perspective for future big data storage. Light. : Sci. Appl. 3, e177 (2014). doi: 10.1038/lsa.2014.58
[5] Zhuang, Y. X. et al. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials. Adv. Funct. Mater. 28, 1705769 (2018). doi: 10.1002/adfm.201705769
[6] Scott, T. F. et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 324, 913-917 (2009). doi: 10.1126/science.1167610
[7] Terris, B. D. et al. Near-field optical data storage using a solid immersion lens. Appl. Phys. Lett. 65, 388-390 (1994). doi: 10.1063/1.112341
[8] Gan, Z. S. et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013). doi: 10.1038/ncomms3061
[9] Andrew, T. L., Tsai, H. Y. & Menon, R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science 324, 917-921 (2009). doi: 10.1126/science.1167704
[10] Liu, Y. J. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229-233 (2017). doi: 10.1038/nature21366
[11] Zhou, J. J. et al. Single-particle spectroscopy for functional nanomaterials. Nature 579, 41-50 (2020). doi: 10.1038/s41586-020-2048-8
[12] Li, N. J. et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324, 910-913 (2009). doi: 10.1126/science.1168996
[13] Parthenopoulos, D. A. & Rentzepis, P. M. Three-dimensional optical storage memory. Science 245, 843-845 (1989). doi: 10.1126/science.245.4920.843
[14] Royon, A. et al. Silver clusters embedded in glass as a perennial high capacity optical recording medium. Adv. Mater. 22, 5282-5286 (2010). doi: 10.1002/adma.201002413
[15] Zhang, J. Y. et al. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112, 033901 (2014). doi: 10.1103/PhysRevLett.112.033901
[16] Huang, X. J. et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 14, 82-88 (2020). doi: 10.1038/s41566-019-0538-8
[17] Poirier, G. et al. Bulk photochromism in a tungstate-phosphate glass: a new optical memory material? J. Chem. Phys. 125, 161101 (2006). doi: 10.1063/1.2364476
[18] Tan, D. Z. et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater. Sci. 76, 154-228 (2016). doi: 10.1016/j.pmatsci.2015.09.002
[19] Qiu, J. R. et al. Manipulation of gold nanoparticles inside transparent materials. Angew. Chem. Int. Ed. 43, 2230-2234 (2004). doi: 10.1002/anie.200352380
[20] Lin, S. S. et al. High-security-level multi-dimensional optical storage medium: nanostructured glass embedded with LiGa5O8: Mn2+ with photostimulated luminescence. Light. : Sci. Appl. 9, 22 (2020). doi: 10.1038/s41377-020-0258-3
[21] Wong, M. C. et al. Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field. Adv. Mater. 29, 1701945 (2017). doi: 10.1002/adma.201701945
[22] Zhan, Y. H. et al. Electrochromism induced reversible upconversion luminescence modulation of WO3: Yb3+, Er3+ inverse opals for optical storage application. Chem. Eng. J. 394, 124967 (2020). doi: 10.1016/j.cej.2020.124967
[23] Ruan, J. F. et al. Thermomchromic reaction-induced reversible upconversion emission modulation for switching devices and tunable upconversion emission based on defect engineering of WO3: Yb3+, Er3+ phosphor. ACS Appl. Mater. Interfaces 10, 14941-14947 (2018). doi: 10.1021/acsami.8b03616
[24] Xu, W., Chen, X. & Song, H. W. Upconversion manipulation by local electromagnetic field. Nano Today 17, 54-78 (2017). doi: 10.1016/j.nantod.2017.10.011
[25] Ohko, Y. et al. Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat. Mater. 2, 29-31 (2003). doi: 10.1038/nmat796
[26] Ren, Y. T. et al. Reversible upconversion luminescence modification based on photochromism in BaMgSiO4: Yb3+, Tb3+ ceramics for anti-counterfeiting applications. Adv. Optical Mater. 7, 1900213 (2019). doi: 10.1002/adom.201900213
[27] Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204-208 (2011). doi: 10.1038/nature10497
[28] Zhang, C. et al. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout. Adv. Mater. 22, 633-637 (2010). doi: 10.1002/adma.200901722
[29] Zijlstra, P., Chon, J. W. M. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410-413 (2009). doi: 10.1038/nature08053
[30] Wang, S. F. et al. Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties. J. Mater. Chem. C 6, 191-212 (2018). doi: 10.1039/C7TC04189F
[31] Dousti, M. R. et al. Structural and spectroscopic characteristics of Eu3+-doped tungsten phosphate glasses. Optical Mater. 45, 185-190 (2015). doi: 10.1016/j.optmat.2015.03.033
[32] Rabouw, F. T. et al. Non-blinking single-photon emitters in silica. Sci. Rep. 6, 21187 (2016). doi: 10.1038/srep21187
[33] Tarpani, L. et al. Photoactivation of luminescent centers in single SiO2 nanoparticles. Nano Lett. 16, 4312-4316 (2016). doi: 10.1021/acs.nanolett.6b01361
[34] Schirmer, O. F. & Salje, E. Conduction bipolarons in low-temperature crystalline WO3-x. J. Phys. C: Solid State Phys. 13, L1067 (1980). doi: 10.1088/0022-3719/13/36/005
[35] Chen, M. Y. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307-1311 (2020). doi: 10.1038/s41563-020-0732-6
[36] Chan, J. W. et al. Fluorescence spectroscopy of color centers generated in phosphate glasses after exposure to femtosecond laser pulses. J. Am. Ceram. Soc. 85, 1037-1040 (2002). doi: 10.1111/j.1151-2916.2002.tb00219.x
[37] Groot-Berning, K. et al. Deterministic single-ion implantation of rare-earth ions for nanometer-resolution color-center generation. Phys. Rev. Lett. 123, 106802 (2019). doi: 10.1103/PhysRevLett.123.106802
[38] Baum, F. et al. Uncovering the mechanism for the formation of copper thioantimonate (Sb) nanoparticles and its transition to thioantimonide (Sb). Cryst. Growth Des. 18, 6521-6527 (2018). doi: 10.1021/acs.cgd.8b00667
[39] Ashok, J. et al. Laser-stimulated piezo-optical and third harmonic generation studies for Na2O-Sb2O3 glass ceramics-influence of gold ions. J. Mater. Sci. : Mater. Electron. 30, 3782-3791 (2019).
[40] Noculak, A. et al. Bright blue and green luminescence of Sb(Ⅲ) in double perovskite Cs2MInCl6 (M = Na, K) matrices. Chem. Mater. 32, 5118-5124 (2020). doi: 10.1021/acs.chemmater.0c01004
[41] Eichelbaum, M. & Rademann, K. Plasmonic enhancement or energy transfer? On the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices. Adv. Funct. Mater. 19, 2045-2052 (2009). doi: 10.1002/adfm.200801892
[42] Zhou, B. et al. NIR Ⅱ-responsive photon upconversion through energy migration in an ytterbium sublattice. Nat. Photonics 14, 760-766 (2020). doi: 10.1038/s41566-020-00714-6