[1] Xiao, J. et al. A Survey on wireless indoor localization from the device perspective. ACM Comput. Surv. 49, 25 (2016). doi: 10.1145/2933232
[2] del Hougne, P. et al. Precise localization of multiple noncooperative objects in a disordered cavity by wave front shaping. Phys. Rev. Lett. 121, 063901 (2018). doi: 10.1103/PhysRevLett.121.063901
[3] Joshi, K. et al. WiDeo: fine-grained device-free motion tracing using RF backscatter. Proceeding of the 12th USENIX Conference on Networked Systems Design and Implementation, 189-204 (ACM, Oakland, CA, 2015).
[4] Dai, X. X. et al. Ultra-wideband radar-based accurate motion measuring: human body landmark detection and tracking with biomechanical constraints. IET Radar, Sonar Navigation 9, 154-163 (2015). doi: 10.1049/iet-rsn.2014.0223
[5] Pu, Q. F. et al. Whole-home gesture recognition using wireless signals. Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, 27-38 (ACM, Miami, Florida, USA, 2013).
[6] Sadreazami, H. et al. CapsFall: fall detection using ultra-wideband radar and capsule network. IEEE Access 7, 55336-55343 (2019). doi: 10.1109/ACCESS.2019.2907925
[7] Zhao, M. M. et al. Through-wall human pose estimation using radio signals. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7356-7365 (IEEE, Salt Lake City, UT, USA, 2018).
[8] Zhao, M. M. et al. RF-based 3D skeletons. Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, 267-281 (ACM, Budapest, Hungary, 2018).
[9] Mercuri, M. et al. Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor. Nat. Electron. 2, 252-262 (2019). doi: 10.1038/s41928-019-0258-6
[10] Hung, W. P. et al. Real-time and noncontact impulse radio radar system for μm movement accuracy and vital-sign monitoring applications. IEEE Sens. J. 17, 2349-2358 (2017). doi: 10.1109/JSEN.2017.2670919
[11] Huang, D., Nandakumar, R. & Gollakota, S. Feasibility and limits of Wi-Fi imaging. Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, 266-279 (ACM, Memphis, Tennessee, 2014).
[12] Holl, P. M. & Reinhard, F. Holography of Wi-Fi radiation. Phys. Rev. Lett. 118, 18390 (2017).
[13] Wang, G. H. et al. We can hear you with Wi-Fi! IEEE Trans. Mob. Comput. 15, 2907-2920 (2016). doi: 10.1109/TMC.2016.2517630
[14] Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77-79 (2001). doi: 10.1126/science.1058847
[15] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[16] Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333-1338 (2019). doi: 10.1126/science.aaw2498
[17] Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966-3969 (2000). doi: 10.1103/PhysRevLett.85.3966
[18] Fang, N. et al. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534-537 (2005). doi: 10.1126/science.1108759
[19] Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977-980 (2006). doi: 10.1126/science.1133628
[20] Ni, X. J. et al. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013). doi: 10.1038/ncomms3807
[21] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308-312 (2015). doi: 10.1038/nnano.2015.2
[22] High, A. A. et al. Visible-frequency hyperbolic metasurface. Nature 522, 192-196 (2015). doi: 10.1038/nature14477
[23] Khorasaninejad, M. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016). doi: 10.1126/science.aaf6644
[24] Ou, J. Y. et al. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat. Nanotechnol. 8, 252-255 (2013). doi: 10.1038/nnano.2013.25
[25] Cui, T. J. et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light.: Sci. Appl. 3, e218 (2014). doi: 10.1038/lsa.2014.99
[26] Li, L. L. & Cui, T. J. Information metamaterials-from effective media to real-time information processing systems. Nanophotonics 8, 703-724 (2019). doi: 10.1515/nanoph-2019-0006
[27] Tao, H. et al. Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 147401 (2009). doi: 10.1103/PhysRevLett.103.147401
[28] Li, L. L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017). doi: 10.1038/s41467-017-00164-9
[29] Li, L. L. et al. Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1082 (2019). doi: 10.1038/s41467-019-09103-2
[30] Li, Y. B. et al. Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging. Sci. Rep. 6, 23731 (2016). doi: 10.1038/srep23731
[31] Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8, 605-609 (2014). doi: 10.1038/nphoton.2014.139
[32] Sleasman, T. et al. Dynamic metamaterial aperture for microwave imaging. Appl. Phys. Lett. 107, 204104 (2015). doi: 10.1063/1.4935941
[33] Zhao, J. et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl. Sci. Rev. 6, 231-238 (2019). doi: 10.1093/nsr/nwy135
[34] Zhang, L. et al. Space-time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018). doi: 10.1038/s41467-018-06802-0
[35] Yoo, I. et al. Enhancing capacity of spatial multiplexing systems using reconfigurable cavity-backed metasurface antennas in clustered MIMO channels. IEEE Trans. Commun. 67, 1070-1084 (2018).
[36] Yang, H. H. et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep. 6, 35692 (2016). doi: 10.1038/srep35692
[37] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015). doi: 10.1038/nature14539
[38] Sinha, A. et al. Lensless computational imaging through deep learning. Optica 4, 1117-1125 (2017). doi: 10.1364/OPTICA.4.001117
[39] Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517-522 (2015). doi: 10.1364/OPTICA.2.000517
[40] Waller, L. & Tian, L. Computational imaging: machine learning for 3D microscopy. Nature 523, 416-417 (2015). doi: 10.1038/523416a
[41] Li, L. L. et al. DeepNIS: deep neural network for nonlinear electromagnetic inverse scattering. IEEE Trans. Antennas Propag. 67, 1819-1825 (2019). doi: 10.1109/TAP.2018.2885437
[42] Kalinin, S. V., Sumpter, B. G. & Archibald, R. K. Big-deep-smart data in imaging for guiding materials design. Nat. Mater. 14, 973-980 (2015). doi: 10.1038/nmat4395
[43] Malkiel, I. et al. Plasmonic nanostructure design and characterization via deep learning. Light.: Sci. Appl. 7, 60 (2018). doi: 10.1038/s41377-018-0060-7
[44] Liu, D. J. et al. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5, 1365-1369 (2018). doi: 10.1021/acsphotonics.7b01377
[45] Jin, K. H. et al. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26, 4509-4522 (2017). doi: 10.1109/TIP.2017.2713099
[46] Han, Y. S., Yoo, J. & Ye, J. C. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis. Preprint at https://arxiv.org/abs/1611.06391 (2016).
[47] Ren, S. Q. et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137-1149 (2017). doi: 10.1109/TPAMI.2016.2577031
[48] Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. Preprint at https://arxiv.org/abs/1603.04467v1 (2016).