[1] Griffiths PR, de Haseth JA. Fourier Transform Infrared Spectrometry. Hoboken, NJ, USA: Wiley; 2007.
[2] Hartstein A, Kirtley JR, Tsang JC. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers. Phys Rev Lett 1980; 45: 201–204. doi: 10.1103/PhysRevLett.45.201
[3] Osawa M. Surface-enhanced infrared absorption. In: Kawata S, editor. Near-Field Optics and Surface Plasmon Polaritons. Berlin, Heidelberg, Germany: Springer; 2001, pp163–187.
[4] Neubrech F, Huck C, Weber K, Pucci A, Giessen H. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem Rev 2017; 117: 5110–5145. doi: 10.1021/acs.chemrev.6b00743
[5] Aizpurua J, Taubner T, García de Abajo FJ, Brehm M, Hillenbrand R. Substrate-enhanced infrared near-field spectroscopy. Opt Express 2008; 16: 1529–1545. doi: 10.1364/OE.16.001529
[6] Wang T, Nguyen VH, Buchenauer A, Schnakenberg U, Taubner T. Surface enhanced infrared spectroscopy with gold strip gratings. Opt Express 2013; 21: 9005–9010. doi: 10.1364/OE.21.009005
[7] Neubrech F, Pucci A, Cornelius TW, Karim S, García-Etxarri A et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys Rev Lett 2008; 101: 157403. doi: 10.1103/PhysRevLett.101.157403
[8] Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci USA 2009; 106: 19227–19232. doi: 10.1073/pnas.0907459106
[9] Neuman T, Huck C, Vogt J, Neubrech F, Hillenbrand R et al. Importance of plasmonic scattering for an optimal enhancement of vibrational absorption in SEIRA with linear metallic antennas. J Phys Chem C 2015; 119: 26652–26662. doi: 10.1021/acs.jpcc.5b08344
[10] Agrawal A, Singh A, Yazdi S, Singh A, Ong GK et al. Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals. Nano Lett 2017; 17: 2611–2620. doi: 10.1021/acs.nanolett.7b00404
[11] Baldassarre L, Sakat E, Frigerio J, Samarelli A, Gallacher K et al. Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates. Nano Lett 2015; 15: 7225–7231. doi: 10.1021/acs.nanolett.5b03247
[12] Barho FB, Gonzalez-Posada F, Milla-Rodrigo MJ, Bomers M, Cerutti L et al. All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range. Opt Express 2016; 24: 16175–16190. doi: 10.1364/OE.24.016175
[13] Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo FJ et al. Mid-infrared plasmonic biosensing with graphene. Science 2015; 349: 165–168. doi: 10.1126/science.aab2051
[14] Hu H, Yang XX, Zhai F, Hu DB, Liu RN et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat Commun 2016; 7: 12334. doi: 10.1038/ncomms12334
[15] Farmer DB, Avouris P, Li YL, Heinz TF, Han SJ. Ultrasensitive plasmonic detection of molecules with graphene. ACS Photonics 2016; 3: 553–557. doi: 10.1021/acsphotonics.6b00143
[16] Törmä P, Barnes WL. Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys 2015; 78: 013901. doi: 10.1088/0034-4885/78/1/013901
[17] Thomas A, George J, Shalabney A, Dryzhakov M, Varma SJ et al. Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field. Angew Chem 2016; 128: 11634–11638. doi: 10.1002/ange.201605504
[18] Vergauwe RMA, George J, Chervy T, Hutchison JA, Shalabney A et al. Quantum strong coupling with protein vibrational modes. J Phys Chem Lett 2016; 7: 4159–4164. doi: 10.1021/acs.jpclett.6b01869
[19] Simpkins BS, Fears KP, Dressick WJ, Spann BT, Dunkelberger AD et al. Spanning strong to weak normal mode coupling between vibrational and Fabry–Pérot cavity modes through tuning of vibrational absorption strength. ACS Photonics 2015; 2: 1460–1467. doi: 10.1021/acsphotonics.5b00324
[20] Memmi H, Benson O, Sadofev S, Kalusniak S. Strong coupling between surface plasmon polaritons and molecular vibrations. Phys Rev Lett 2017; 118: 126802. doi: 10.1103/PhysRevLett.118.126802
[21] Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light-matter interaction at the nanometre scale. Nature 2002; 418: 159–162. doi: 10.1038/nature00899
[22] Caldwell JD, Glembocki OJ, Francescato Y, Sharac N, Giannini V et al. Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett 2013; 13: 3690–3697. doi: 10.1021/nl401590g
[23] Wang T, Li PN, Chigrin DN, Giles AJ, Bezares FJ et al. Phononic-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photonics 2017; 4: 1753–1760. doi: 10.1021/acsphotonics.7b00321
[24] Wang T, Li PN, Hauer B, Chigrin DN, Taubner T. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett 2013; 13: 5051–5055. doi: 10.1021/nl4020342
[25] Greffet JJ, Carminati R, Joulain K, Mulet JP, Mainguy S et al. Coherent emission of light by thermal sources. Nature 2002; 416: 61–64. doi: 10.1038/416061a
[26] Esteban R, Aizpurua J, Bryant GW. Strong coupling of single emitters interacting with phononic infrared antennae. N J Phys 2014; 16: 013052. doi: 10.1088/1367-2630/16/1/013052
[27] Li PN, Yang XS, Maß TWW, Hanss J, Lewin M et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat Mater 2016; 15: 870–875. doi: 10.1038/nmat4649
[28] Anderson MS. Enhanced infrared absorption with dielectric nanoparticles. Appl Phys Lett 2003; 83: 2964–2966. doi: 10.1063/1.1615317
[29] Anderson MS. Surface enhanced infrared absorption by coupling phonon and plasma resonance. Appl Phys Lett 2005; 87: 144102. doi: 10.1063/1.2077838
[30] Caldwell JD, Lindsay L, Giannini V, Vurgaftman I, Reinecke TL et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 2015; 4: 44–68. doi: 10.1515/nanoph-2014-0003
[31] Caldwell JD, Novoselov KS. Van der Waals heterostructures: mid-infrared nanophotonics. Nat Mater 2015; 14: 364–366. doi: 10.1038/nmat4252
[32] Dai S, Fei Z, Ma Q, Rodin AS, Wagner M et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 2014; 343: 1125–1129. doi: 10.1126/science.1246833
[33] Caldwell JD, Kretinin A, Chen YG, Giannini V, Fogler MM et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat Commun 2014; 5: 5221. doi: 10.1038/ncomms6221
[34] Alfaro-Mozaz FJ, Alonso-González P, Vélez S, Dolado I, Autore M et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat Commun 2017; 8: 15624. doi: 10.1038/ncomms15624
[35] Dai S, Ma Q, Andersen T, Mcleod AS, Fei Z et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat Commun 2015; 6: 6963. doi: 10.1038/ncomms7963
[36] Li PN, Lewin M, Kretinin AV, Caldwell JD, Novoselov KS et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat Commun 2015; 6: 7507. doi: 10.1038/ncomms8507
[37] Glaser T, Beck S, Lunkenheimer B, Donhauser D, Köhn A et al. Infrared study of the MoO3 doping efficiency in 4, 4′-bis(N-carbazolyl)-1, 1′-biphenyl (CBP). Org Electron 2013; 14: 575–583. doi: 10.1016/j.orgel.2012.11.031
[38] Olmon RL, Slovick B, Johnson TW, Shelton D, Oh SH et al. Optical dielectric function of gold. Phys Rev B 2012; 86: 235147. doi: 10.1103/PhysRevB.86.235147
[39] Li P, Dolado I, Alfaro-Mozaz FJ, Nikitin AY, Casanova F et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials. Nano Lett 2017; 17: 228–235. doi: 10.1021/acs.nanolett.6b03920
[40] Glover RE III, Tinkham M. Conductivity of superconducting films for photon energies between 0.3 and 40 kT c. Phys Rev 1957; 108: 243–256. doi: 10.1103/PhysRev.108.243
[41] Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater 2014; 1: 011002. doi: 10.1088/2053-1583/1/1/011002
[42] Novotny L. Strong coupling, energy splitting, and level crossings: a classical perspective. Am J Phys 2010; 78: 1199–1202. doi: 10.1119/1.3471177
[43] Wu XH, Gray SK, Pelton M. Quantum-dot-induced transparency in a nanoscale plasmonic resonator. Opt Express 2010; 18: 23633–23645. doi: 10.1364/OE.18.023633
[44] Rybin MV, Mingaleev SF, Limonov MF, Kivshar YS. Purcell effect and Lamb shift as interference phenomena. Sci Rep 2016; 6: 20599. doi: 10.1038/srep20599
[45] Zhang Y, Meng QS, Zhang L, Luo Y, Yu YJ et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat Commun 2017; 8: 15225. doi: 10.1038/ncomms15225
[46] Auffèves A, Gérard JM, Poizat JP. Pure emitter dephasing: a resource for advanced solid-state single-photon sources. Phys Rev A 2009; 79: 053838. doi: 10.1103/PhysRevA.79.053838
[47] Boltasseva A, Atwater HA. Low-loss plasmonic metamaterials. Science 2001; 331: 290–291. doi: 10.1126/science.1198258
[48] Huck C, Vogt J, Neuman T, Nagao T, Hillenbrand R et al. Strong coupling between phonon-polaritons and plasmonic nanorods. Opt Express 2016; 24: 25528–25539. doi: 10.1364/OE.24.025528
[49] Arnold C, Marquier F, Garin M, Pardo F, Collin S et al. Coherent thermal infrared emission by two-dimensional silicon carbide gratings. Phys Rev B 2012; 86: 035316. doi: 10.1103/PhysRevB.86.035316
[50] Schuller JA, Taubner T, Brongersma ML. Optical antenna thermal emitters. Nat Photonics 2009; 3: 658–661. doi: 10.1038/nphoton.2009.188
[51] Tame MS, McEnery KR, Özdemir SK, Lee J, Maier SA et al. Quantum plasmonics. Nat Phys 2013; 9: 329–340.
[52] Giannini V, Francescato Y, Amrania H, Phillips CC, Maier SA. Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. Nano Lett 2011; 11: 2835–2840. doi: 10.1021/nl201207n
[53] Osley EJ, Biris CG, Thompson PG, Jahromi RRF, Warburton PA et al. Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule. Phys Rev Lett 2013; 110: 087402. doi: 10.1103/PhysRevLett.110.087402
[54] Huth F, Schnell M, Wittborn J, Ocelic N, Hillenbrand R. Infrared-spectroscopic nanoimaging with a thermal source. Nat Mater 2011; 10: 352–356. doi: 10.1038/nmat3006
[55] Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett 2012; 12: 3973–3978. doi: 10.1021/nl301159v
[56] Alonso-González P, Albella P, Neubrech F, Huck C, Chen J et al. Experimental verification of the spectral shift between near-and far-field peak intensities of plasmonic infrared nanoantennas. Phys Rev Lett 2013; 110: 203902. doi: 10.1103/PhysRevLett.110.203902
[57] Giles AJ, Dai SY, Glembocki OJ, Kretinin AV, Sun ZY et al. Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett 2016; 16: 3858–3865. doi: 10.1021/acs.nanolett.6b01341
[58] Melnikau D, Esteban R, Savateeva D, Sánchez-Iglesias A, Grzelczak M et al. Rabi splitting in photoluminescence spectra of hybrid systems of gold nanorods and J-aggregates. J Phys Chem Lett 2016; 7: 354–362. doi: 10.1021/acs.jpclett.5b02512
[59] Yang ZJ, Antosiewicz TJ, Shegai T. Role of material loss and mode volume of plasmonic nanocavities for strong plasmon–exciton interactions. Opt Express 2016; 24: 20373–20381. doi: 10.1364/OE.24.020373
[60] Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 2007; 445: 896–899. doi: 10.1038/nature05586
[61] Antosiewicz TJ, Apell SP, Shegai T. Plasmon–exciton interactions in a core-shell geometry: from enhanced absorption to strong coupling. ACS Photonics 2014; 1: 454–463. doi: 10.1021/ph500032d
[62] Giles AJ, Dai SY, Vurgaftman I, Hoffman T, Liu S et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat Mater 2018; 17: 134–139. doi: 10.1038/nmat5047
[63] Ebbesen TW. Hybrid light-matter states in a molecular and material science perspective. Acc Chem Res 2016; 49: 2403–2412. doi: 10.1021/acs.accounts.6b00295
[64] del Pino J, Feist J, Garcia-Vidal FJ. Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode. New J Phys 2015; 17: 053040. doi: 10.1088/1367-2630/17/5/053040