[1] Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007). doi: 10.1126/science.1137395
[2] Feng, S. & Kumar, P. Spatial symmetry and conservation of orbital angular momentum in spontaneous parametric down-conversion. Phys. Rev. Lett. 101, 163602 (2008). doi: 10.1103/PhysRevLett.101.163602
[3] Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003). doi: 10.1038/nature01935
[4] Zhang, C. L. et al. Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor. Appl. Phys. Lett. 102, 011114 (2013). doi: 10.1063/1.4773997
[5] Leach, J. et al. Quantum correlations in optical angle-orbital angular momentum variables. Science 329, 662–665 (2010). doi: 10.1126/science.1190523
[6] Mair, A. et al. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001). doi: 10.1038/35085529
[7] Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012). doi: 10.1038/nphoton.2012.138
[8] Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013). doi: 10.1126/science.1237861
[9] Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R. Soc. A 336, 165–190 (1974).
[10] Lei, T. et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light.: Sci. Appl. 4, e257 (2015). doi: 10.1038/lsa.2015.30
[11] Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photonics 5, 343–348 (2011). doi: 10.1038/nphoton.2011.81
[12] Zhang, C. L. et al. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging. Appl. Phys. Lett. 108, 201601 (2016). doi: 10.1063/1.4948249
[13] Shao, Z. K. et al. On-chip switchable radially and azimuthally polarized vortex beam generation. Opt. Lett. 43, 1263–1266 (2018). doi: 10.1364/OL.43.001263
[14] Dorn, R., Quabis, S. & Leuchs, G. Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003). doi: 10.1103/PhysRevLett.91.233901
[15] Wang, H. F. et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photonics 2, 501–505 (2008). doi: 10.1038/nphoton.2008.127
[16] Zhang, Y. Q. et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams. Nano Lett. 18, 5538–5543 (2018). doi: 10.1021/acs.nanolett.8b01929
[17] Wei, S. B. et al. Sub-100nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting. Opt. Express 23, 30143–30148 (2015). doi: 10.1364/OE.23.030143
[18] Moh, K. J. et al. Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams. Appl. Opt. 46, 7544–7551 (2007). doi: 10.1364/AO.46.007544
[19] Genevet, P. et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat. Commun. 3, 1278 (2012). doi: 10.1038/ncomms2293
[20] Chen, P. et al. Generation of equal-energy orbital angular momentum beams via photopatterned liquid crystals. Phys. Rev. Appl. 5, 044009 (2016). doi: 10.1103/PhysRevApplied.5.044009
[21] Mehmood, M. Q. et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv. Mater. 28, 2533–2539 (2016). doi: 10.1002/adma.201504532
[22] Mei, S. T. et al. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. Nanoscale 8, 2227–2233 (2016). doi: 10.1039/C5NR07374J
[23] Berkhout, G. C. G. et al. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010). doi: 10.1103/PhysRevLett.105.153601
[24] Wen, Y. H. et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett. 120, 193904 (2018). doi: 10.1103/PhysRevLett.120.193904
[25] Mirhosseini, M. et al. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun. 4, 2781 (2013). doi: 10.1038/ncomms3781
[26] Zhou, J., Zhang, W. H. & Chen, L. X. Experimental detection of high-order or fractional orbital angular momentum of light based on a robust mode converter. Appl. Phys. Lett. 108, 111108 (2016). doi: 10.1063/1.4944463
[27] Zheng, S. & Wang, J. Measuring Orbital Angular Momentum (OAM) states of vortex beams with annular gratings. Sci. Rep. 7, 40781 (2017). doi: 10.1038/srep40781
[28] Rui, G. H. et al. Detection of orbital angular momentum using a photonic integrated circuit. Sci. Rep. 6, 28262 (2016). doi: 10.1038/srep28262
[29] Chen, J. et al. On-chip detection of orbital angular momentum beam by plasmonic nanogratings. Laser Photonics Rev. 12, 1700331 (2018). doi: 10.1002/lpor.201700331
[30] Wang, S., Zhao, C. Y. & Li, X. Dynamical manipulation of surface plasmon polaritons. Appl. Sci. 9, 3297 (2019). doi: 10.3390/app9163297
[31] Feng, F. et al. Spin-orbit coupling controlled near-field propagation and focusing of Bloch surface wave. Opt. Express 27, 27536–27545 (2019). doi: 10.1364/OE.27.027536
[32] Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013). doi: 10.1126/science.1233746