[1] Kitayama, K. -I. et al. Novel frontier of photonics for data processing—Photonic accelerator. APL Photonics 4, 090901 (2019). doi: 10.1063/1.5108912
[2] Waldrop, M. M. The chips are down for Moore's law. Nature 530, 144–147 (2016). doi: 10.1038/530144a
[3] Shen, Y. C. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017). doi: 10.1038/nphoton.2017.93
[4] Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999). doi: 10.1038/44565
[5] Richardson, M. & Domingos, P. The intelligent surfer: probabilistic combination of link and content information in pagerank. In Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. 1441–1448 (Vancouver British, Columbia, Canada: MIT Press, 2001).
[6] Shannon, C. E. & McCarthy, J. Automata studies. (Princeton, NJ: Princeton University Press, 1956).
[7] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). doi: 10.1038/nature14539
[8] Dominey, P. F. & Ramus, F. Neural network processing of natural language: I. Sensitivity to serial, temporal and abstract structure of language in the infant. Lang. Cogn. Process. 15, 87–127 (2000). doi: 10.1080/016909600386129
[9] Zhen, Z. et al. Realizing transmitted metasurface cloak by a tandem neural network. Photonics Res. 9, B229–B235 (2021).
[10] Qian, C. & Chen, H. S. A perspective on the next generation of invisibility cloaks—Intelligent cloaks. Appl. Phys. Lett. 118, 180501 (2021). doi: 10.1063/5.0049748
[11] Qian, C. et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics 14, 383–390 (2020). doi: 10.1038/s41566-020-0604-2
[12] Chen, X. D. et al. A review of deep learning approaches for inverse scattering problems (invited review). Prog. Electromagnetics Res. 167, 67–81 (2020). doi: 10.2528/PIER20030705
[13] Ma, W. et al. Deep learning for the design of photonic structures. Nat. Photonics 15, 77–90 (2021). doi: 10.1038/s41566-020-0685-y
[14] Sarle, W. S. Neural networks and statistical models. In Proceedings of The 19th Annual SAS Users Group International Conference. 1538–1550 (Cary, NC: SAS Institute, 1994).
[15] Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021). doi: 10.1038/s41566-020-00754-y
[16] Xu, X. Y. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021). doi: 10.1038/s41586-020-03063-0
[17] Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012). doi: 10.1038/nphoton.2012.138
[18] Nahmias, M. A. et al. A TeraMAC neuromorphic photonic processor. In Proceedings of 2018 IEEE Photonics Conference (IPC). (Reston, VA, USA: IEEE, 2018).
[19] Von Bieren, K. Lens design for optical Fourier transform systems. Appl. Opt. 10, 2739–2742 (1971). doi: 10.1364/AO.10.002739
[20] Pérez, D. et al. Principles, fundamentals, and applications of programmable integrated photonics. Adv. Opt. Photonics 12, 709–786 (2020). doi: 10.1364/AOP.387155
[21] Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020). doi: 10.1038/s41586-020-2764-0
[22] Pérez, D., Gasulla, I. & Capmany, J. Programmable multifunctional integrated nanophotonics. Nanophotonics 7, 1351–1371 (2018). doi: 10.1515/nanoph-2018-0051
[23] Zhang, Q. M. et al. Artificial neural networks enabled by nanophotonics. Light Sci. Appl. 8, 1–14 (2019). doi: 10.1038/s41377-018-0109-7
[24] de Lima, T. F. et al. Machine learning with neuromorphic photonics. J. Lightwave Technol. 37, 1515–1534 (2019). doi: 10.1109/JLT.2019.2903474
[25] Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020). doi: 10.1038/s41586-020-2973-6
[26] Stark, P. et al. Opportunities for integrated photonic neural networks. Nanophotonics 9, 4221–4232 (2020). doi: 10.1515/nanoph-2020-0297
[27] de Lima, T. F. et al. Primer on silicon neuromorphic photonic processors: architecture and compiler. Nanophotonics 9, 4055–4073 (2020). doi: 10.1515/nanoph-2020-0172
[28] de Lima, T. F. et al. Progress in neuromorphic photonics. Nanophotonics 6, 577–599 (2017). doi: 10.1515/nanoph-2016-0139
[29] Yao, K., Unni, R. & Zheng, Y. B. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics 8, 339–366 (2019). doi: 10.1515/nanoph-2018-0183
[30] Jiang, J. Q., Chen, M. K. & Fan, J. A. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 6, 679–700 (2021). doi: 10.1038/s41578-020-00260-1
[31] Van der Sande, G., Brunner, D. & Soriano, M. C. Advances in photonic reservoir computing. Nanophotonics 6, 561–576 (2017). doi: 10.1515/nanoph-2016-0132
[32] Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018). doi: 10.1364/OPTICA.5.001623
[33] Cheng, J. W., Zhou, H. L. & Dong, J. J. Photonic matrix computing: from fundamentals to applications. Nanomaterials 11, 1683 (2021). doi: 10.3390/nano11071683
[34] Athale, R. A. & Collins, W. C. Optical matrix-matrix multiplier based on outer product decomposition. Appl. Opt. 21, 2089–2090 (1982). doi: 10.1364/AO.21.002089
[35] Zhu, W. W. et al. Design and experimental verification for optical module of optical vector-matrix multiplier. Appl. Opt. 52, 4412–4418 (2013). doi: 10.1364/AO.52.004412
[36] Reck, M. et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994). doi: 10.1103/PhysRevLett.73.58
[37] Habiby, S. F. & Collins, S. A. Implementation of a fast digital optical matrix–vector multiplier using a holographic look-up table and residue arithmetic. Appl. Opt. 26, 4639–4652 (1987). doi: 10.1364/AO.26.004639
[38] Bocker, R. P., Clayton, S. R. & Bromley, K. Electrooptical matrix multiplication using the twos complement arithmetic for improved accuracy: erratum. Appl. Opt. 22, 3149 (1983). doi: 10.1364/AO.22.003149
[39] Cartwright, S. New optical matrix–vector multiplier. Appl. Opt. 23, 1683–1684 (1984). doi: 10.1364/AO.23.001683
[40] Hong, J. & Yeh, P. Photorefractive parallel matrix–matrix multiplier. Opt. Lett. 16, 1343–1345 (1991). doi: 10.1364/OL.16.001343
[41] Beijersbergen, M. W. et al. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993). doi: 10.1016/0030-4018(93)90535-D
[42] Liu, B. et al. Matrix–vector multiplication in a photorefractive crystal. Opt. Commun. 146, 34–38 (1998). doi: 10.1016/S0030-4018(97)00512-9
[43] Mukhopadhay, S. et al. Implementation of all-optical digital matrix multiplication scheme with nonlinear material. Optical Eng. 40, 1998–2002 (2001). doi: 10.1117/1.1390519
[44] Morizur, J. -F. et al. Programmable unitary spatial mode manipulation. J. Optical Soc. Am. A 27, 2524–2531 (2010). doi: 10.1364/JOSAA.27.002524
[45] Labroille, G. et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express 22, 15599–15607 (2014). doi: 10.1364/OE.22.015599
[46] Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018). doi: 10.1126/science.aat8084
[47] Li, J. X. et al. Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Adv. Photonics 1, 046001 (2019).
[48] Bernstein, L. et al. Freely scalable and reconfigurable optical hardware for deep learning. Sci. Rep. 11, 3144 (2021). doi: 10.1038/s41598-021-82543-3
[49] Fontaine, N. K. et al. Laguerre-Gaussian mode sorter. Nat. Commun. 10, 1865 (2019). doi: 10.1038/s41467-019-09840-4
[50] Wang, P. P. et al. Diffractive deep neural network for optical orbital angular momentum multiplexing and demultiplexing. IEEE J. Sel. Top. Quantum Electron. 28, 7500111 (2022).
[51] Pierangeli, D., Marcucci, G. & Conti, C. Large-scale photonic ising machine by spatial light modulation. Phys. Rev. Lett. 122, 213902 (2019). doi: 10.1103/PhysRevLett.122.213902
[52] Pierangeli, D., Marcucci, G. & Conti, C. Adiabatic evolution on a spatial-photonic Ising machine. Optica 7, 1535–1543 (2020). doi: 10.1364/OPTICA.398000
[53] Mounaix, M. et al. Time reversed optical waves by arbitrary vector spatiotemporal field generation. Nat. Commun. 11, 5813 (2020). doi: 10.1038/s41467-020-19601-3
[54] Qian, C. et al. Performing optical logic operations by a diffractive neural network. Light Sci. Appl. 9, 59 (2020). doi: 10.1038/s41377-020-0303-2
[55] Qu, G. Y. et al. Reprogrammable meta-hologram for optical encryption. Nat. Commun. 11, 5484 (2020). doi: 10.1038/s41467-020-19312-9
[56] Goi, E. et al. Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip. Light Sci. Appl. 10, 40 (2021). doi: 10.1038/s41377-021-00483-z
[57] Zhang, Y. H. et al. An ultra-broadband polarization-insensitive optical hybrid using multiplane light conversion. J. Lightwave Technol. 38, 6286–6291 (2020). doi: 10.1109/JLT.2020.3012108
[58] Zhou, T. K. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics 15, 367–373 (2021). doi: 10.1038/s41566-021-00796-w
[59] Tang, R., Tanemura, T. & Nakano, Y. Integrated reconfigurable unitary optical mode converter using MMI couplers. IEEE Photonics Technol. Lett. 29, 971–974 (2017). doi: 10.1109/LPT.2017.2700619
[60] Tang, R. et al. Reconfigurable all-optical on-chip MIMO three-mode demultiplexing based on multi-plane light conversion. Opt. Lett. 43, 1798–1801 (2018). doi: 10.1364/OL.43.001798
[61] Saygin, M. Y. et al. Robust architecture for programmable universal unitaries. Phys. Rev. Lett. 124, 010501 (2020). doi: 10.1103/PhysRevLett.124.010501
[62] Tang, R. et al. Ten-port unitary optical processor on a silicon photonic chip. ACS Photonics 8, 2074–2080 (2021). doi: 10.1021/acsphotonics.1c00419
[63] Miller, D. A. B. Self-aligning universal beam coupler. Opt. Express 21, 6360–6370 (2013). doi: 10.1364/OE.21.006360
[64] Miller, D. A. B. Establishing optimal wave communication channels automatically. J. Lightwave Technol. 31, 3987–3994 (2013). doi: 10.1109/JLT.2013.2278809
[65] Miller, D. A. B. Self-configuring universal linear optical component. Photonics Res. 1, 1–15 (2013). doi: 10.1364/PRJ.1.000001
[66] Miller, D. A. B. Reconfigurable add-drop multiplexer for spatial modes. Opt. Express 21, 20220–20229 (2013). doi: 10.1364/OE.21.020220
[67] Clements, W. R. et al. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016). doi: 10.1364/OPTICA.3.001460
[68] Ribeiro, A. et al. Demonstration of a 4 × 4-port universal linear circuit. Optica 3, 1348–1357 (2016). doi: 10.1364/OPTICA.3.001348
[69] Annoni, A. et al. Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6, e17110 (2017). doi: 10.1038/lsa.2017.110
[70] Mennea, P. L. et al. Modular linear optical circuits. Optica 5, 1087–1090 (2018). doi: 10.1364/OPTICA.5.001087
[71] Bagherian, H. et al. On-chip optical convolutional neural networks. Preprint at https://arxiv.org/abs/1808.03303 (2018).
[72] Choutagunta, K. et al. Adapting Mach–Zehnder mesh equalizers in direct-detection mode-division-multiplexed links. J. Lightwave Technol. 38, 723–735 (2020). doi: 10.1109/JLT.2019.2952060
[73] Cong, G. W. et al. Arbitrary reconfiguration of universal silicon photonic circuits by bacteria foraging algorithm to achieve reconfigurable photonic digital-to-analog conversion. Opt. Express 27, 24914–24922 (2019). doi: 10.1364/OE.27.024914
[74] Prabhu, M. et al. Accelerating recurrent Ising machines in photonic integrated circuits. Optica 7, 551–558 (2020). doi: 10.1364/OPTICA.386613
[75] Roques-Carmes, C. et al. Heuristic recurrent algorithms for photonic Ising machines. Nat. Commun. 11, 249 (2020). doi: 10.1038/s41467-019-14096-z
[76] Miller, D. A. B. Analyzing and generating multimode optical fields using self -configuring networks. Optica 7, 794–801 (2020). doi: 10.1364/OPTICA.391592
[77] Zhang, H. et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun. 12, 457 (2021). doi: 10.1038/s41467-020-20719-7
[78] Xu, Q. F. & Soref, R. Reconfigurable optical directed-logic circuits using microresonator-based optical switches. Opt. Express 19, 5244–5259 (2011). doi: 10.1364/OE.19.005244
[79] Yang, L. et al. On-chip CMOS-compatible optical signal processor. Opt. Express 20, 13560–13565 (2012). doi: 10.1364/OE.20.013560
[80] Karpov, M. et al. Dynamics of soliton crystals in optical microresonators. Nat. Phys. 15, 1071–1077 (2019). doi: 10.1038/s41567-019-0635-0
[81] Obrzud, E. et al. A microphotonic astrocomb. Nat. Photonics 13, 31–35 (2019). doi: 10.1038/s41566-018-0309-y
[82] Tait, A. N. et al. Broadcast and weight: an integrated network for scalable photonic spike processing. J. Lightwave Technol. 32, 4029–4041 (2014). doi: 10.1109/JLT.2014.2345652
[83] Tait, A. N. et al. Multi-channel control for microring weight banks. Opt. Express 24, 8895–8906 (2016). doi: 10.1364/OE.24.008895
[84] Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017). doi: 10.1038/s41598-017-07754-z
[85] Huang, C. R. et al. Demonstration of scalable microring weight bank control for large-scale photonic integrated circuits. APL Photonics 5, 040803 (2020). doi: 10.1063/1.5144121
[86] Ma, P. Y. et al. Photonic independent component analysis using an on-chip microring weight bank. Opt. Express 28, 1827–1844 (2020). doi: 10.1364/OE.383603
[87] Ma, P. Y. et al. Photonic principal component analysis using an on-chip microring weight bank. Opt. Express 27, 18329–18342 (2019). doi: 10.1364/OE.27.018329
[88] Ma, P. Y. et al. Blind source separation with integrated photonics and reduced dimensional statistics. Opt. Lett. 45, 6494–6497 (2020). doi: 10.1364/OL.409474
[89] Feldmann, J. et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019). doi: 10.1038/s41586-019-1157-8
[90] Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021). doi: 10.1038/s41586-020-03070-1
[91] Xu, S. F., Wang, J. & Zou, W. W. Optical convolutional neural network with WDM-based optical patching and microring weighting banks. IEEE Photonics Technol. Lett. 33, 89–92 (2021). doi: 10.1109/LPT.2020.3045478
[92] Bangari, V. et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs). IEEE J. Sel. Top. Quantum Electron. 26, 7701213 (2020).
[93] Xu, S. F., Wang, J. & Zou, W. W. Optical patching scheme for optical convolutional neural networks based on wavelength-division multiplexing and optical delay lines. Opt. Lett. 45, 3689–3692 (2020). doi: 10.1364/OL.397344
[94] Xu, X. Y. et al. Photonic perceptron based on a kerr microcomb for high-speed, scalable, optical neural networks. Laser Photonics Rev. 14, 2000070 (2020). doi: 10.1002/lpor.202000070
[95] Ramey, C. Silicon photonics for artificial intelligence acceleration: Hotchips 32. In Proceedings of 2020 IEEE Hot Chips 32 Symposium (HCS) (Palo Alto, CA, USA: IEEE, 2020).
[96] Sakamaki, Y. et al. New optical waveguide design based on wavefront matching method. J. Lightwave Technol. 25, 3511–3518 (2007). doi: 10.1109/JLT.2007.906798
[97] Boucher, P. et al. Spatial optical mode demultiplexing as a practical tool for optimal transverse distance estimation. Optica 7, 1621–1626 (2020). doi: 10.1364/OPTICA.404746
[98] Wen, H. et al. Scalable non-mode selective Hermite-Gaussian mode multiplexer based on multi-plane light conversion. Photonics Res. 9, 88–97 (2021). doi: 10.1364/PRJ.411529
[99] Wen, H. et al. Scalable Hermite-Gaussian mode-demultiplexing hybrids. Opt. Lett. 45, 2219–2222 (2020). doi: 10.1364/OL.387460
[100] Wen, H. et al. Mode demultiplexing hybrids for mode-division multiplexing coherent receivers. Photonics Res. 7, 917–925 (2019). doi: 10.1364/PRJ.7.000917
[101] Pai, S. et al. Matrix optimization on universal unitary photonic devices. Phys. Rev. Appl. 11, 064044 (2019). doi: 10.1103/PhysRevApplied.11.064044
[102] Zhang, T. et al. Efficient training and design of photonic neural network through neuroevolution. Opt. Express 27, 37150–37163 (2019). doi: 10.1364/OE.27.037150
[103] Zhou, H. L. et al. Self-configuring and reconfigurable silicon photonic signal processor. ACS Photonics 7, 792–799 (2020). doi: 10.1021/acsphotonics.9b01673
[104] Zhou, H. L. et al. Chip-scale optical matrix computation for PageRank algorithm. IEEE J. Sel. Top. Quantum Electron. 26, 8300910 (2020).
[105] Zhou, H. L. et al. All-in-one silicon photonic polarization processor. Nanophotonics 8, 2257–2267 (2019). doi: 10.1515/nanoph-2019-0310
[106] Zhou, H. L. et al. Multipurpose photonic polarization processor chip. In Proceedings of 2019 Asia Communications and Photonics Conference (Chengdu, China: IEEE, 2019).
[107] Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017). doi: 10.1038/s41467-017-00714-1
[108] Pérez, D., Gasulla, I. & Capmany, J. Field-programmable photonic arrays. Opt. Express 26, 27265–27278 (2018). doi: 10.1364/OE.26.027265
[109] Zhao, Y. H. et al. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Front. Optoelectron. 12, 148–156 (2019). doi: 10.1007/s12200-018-0846-5
[110] Khan, M. H. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photonics 4, 117–122 (2010). doi: 10.1038/nphoton.2009.266
[111] Tait, A. N. et al. Continuous calibration of microring weights for analog optical networks. IEEE Photonics Technol. Lett. 28, 887–890 (2016). doi: 10.1109/LPT.2016.2516440
[112] Tait, A. N. et al. Microring weight banks. IEEE J. Sel. Top. Quantum Electron. 22, 5900214 (2016).
[113] Zhang, W. P. et al. Microring weight banks control beyond 8.5-bits accuracy. Preprint at https://arxiv.org/abs/2104.01164 (2021).
[114] Tait, A. N. et al. Feedback control for microring weight banks. Opt. Express 26, 26422–26443 (2018). doi: 10.1364/OE.26.026422
[115] Huang, C. R. et al. Demonstration of photonic neural network for fiber nonlinearity compensation in long-haul transmission systems. In Proceedings of 2020 Optical Fiber Communications Conference and Exhibition (OFC) (San Diego, CA, USA: IEEE, 2020).
[116] Li, X. Q. et al. Performance analysis of GPU-based convolutional neural networks. In Proceedings of 2016 45th International Conference on Parallel Processing (ICPP). (Philadelphia, PA, USA: IEEE, 2016).
[117] Zhang, Y. X. & Wang, Y. H. Nonlinear optical properties of metal nanoparticles: a review. RSC Adv. 7, 45129–45144 (2017). doi: 10.1039/C7RA07551K
[118] He, M. B. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics 13, 359–364 (2019). doi: 10.1038/s41566-019-0378-6
[119] Wang, Y. L. et al. Ultrahigh-speed graphene-based optical coherent receiver. Nat. Commun. 12, 5076 (2021). doi: 10.1038/s41467-021-25374-0
[120] Xiang, S. Y. et al. A review: Photonics devices, architectures, and algorithms for optical neural computing. J. Semiconductors 42, 023105 (2021). doi: 10.1088/1674-4926/42/2/023105
[121] Kulce, O. et al. All-optical information-processing capacity of diffractive surfaces. Light Sci. Appl. 10, 1 (2021). doi: 10.1038/s41377-020-00435-z
[122] Dou, H. K. et al. Residual D2NN: training diffractive deep neural networks via learnable light shortcuts. Opt. Lett. 45, 2688–2691 (2020). doi: 10.1364/OL.389696
[123] Pierangeli, D. et al. Noise-enhanced spatial-photonic Ising machine. Nanophotonics 9, 4109–4116 (2020). doi: 10.1515/nanoph-2020-0119
[124] Fang, Y. S., Huang, J. Y. & Ruan, Z. C. Experimental observation of phase transitions in spatial photonic ising machine. Phys. Rev. Lett. 127, 043902 (2021). doi: 10.1103/PhysRevLett.127.043902
[125] Huang, J. Y., Fang, Y. S. & Ruan, Z. C. Antiferromagnetic spatial photonic Ising machine through optoelectronic correlation computing. Commun. Phys. 4, 242 (2021). doi: 10.1038/s42005-021-00741-x
[126] Zuo, Y. et al. All-optical neural network with nonlinear activation functions. Optica 6, 1132–1137 (2019). doi: 10.1364/OPTICA.6.001132
[127] Hughes, T. W. et al. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica 5, 864–871 (2018). doi: 10.1364/OPTICA.5.000864
[128] Zhang, H. et al. Efficient on-chip training of optical neural networks using genetic algorithm. ACS Photonics 8, 1662–1672 (2021). doi: 10.1021/acsphotonics.1c00035
[129] Miscuglio, M. & Sorger, V. J. Photonic tensor cores for machine learning. Appl. Phys. Rev. 7, 031404 (2020). doi: 10.1063/5.0001942
[130] Xie, S. N. et al. Aggregated residual transformations for deep neural networks. In Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 5987–5955 (Honolulu, HI, USA: IEEE, 2017).
[131] Jayatilleka, H. et al. Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits. Optica 6, 84–91 (2019). doi: 10.1364/OPTICA.6.000084
[132] Demkov, A. A. et al. Materials for emergent silicon-integrated optical computing. J. Appl. Phys. 130, 070907 (2021). doi: 10.1063/5.0056441
[133] Blumenthal, D. J. et al. Silicon nitride in silicon photonics. Proc. IEEE 106, 2209–2231 (2018). doi: 10.1109/JPROC.2018.2861576
[134] Harris, N. C. et al. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22, 10487–10493 (2014). doi: 10.1364/OE.22.010487
[135] Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018). doi: 10.1038/s41565-017-0039-1
[136] de Lima, T. F. et al. Noise analysis of photonic modulator neurons. IEEE J. Sel. Top. Quantum Electron. 26, 7600109 (2020).
[137] Amin, R. et al. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance. Nanophotonics 7, 455–472 (2017). doi: 10.1515/nanoph-2017-0072
[138] Amin, R. et al. ITO-based electro-absorption modulator for photonic neural activation function. APL Mater. 7, 081112 (2019). doi: 10.1063/1.5109039
[139] Brunstein, M. et al. Excitability and self-pulsing in a photonic crystal nanocavity. Phys. Rev. A 85, 031803 (2012). doi: 10.1103/PhysRevA.85.031803
[140] Nozaki, K. et al. Femtofarad optoelectronic integration demonstrating energy-saving signal conversion and nonlinear functions. Nat. Photonics 13, 454–459 (2019). doi: 10.1038/s41566-019-0397-3
[141] Ramirez, J. M. et al. III-V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 26, 6100213 (2020).
[142] Liu, A. Y. & Bowers, J. Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).
[143] Liang, D. et al. Hybrid integrated platforms for silicon photonics. Materials 3, 1782–1802 (2010). doi: 10.3390/ma3031782
[144] Selmi, F. et al. Relative refractory period in an excitable semiconductor laser. Phys. Rev. Lett. 112, 183902 (2014). doi: 10.1103/PhysRevLett.112.183902
[145] Peng, H. T. et al. Neuromorphic Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 24, 6101715 (2018).
[146] Nahmias, M. A. et al. A laser spiking neuron in a photonic integrated circuit. Preprint at https://arxiv.org/abs/2012.08516 (2020).
[147] Tait, A. N. et al. Silicon photonic modulator neuron. Phys. Rev. Appl. 11, 064043 (2019). doi: 10.1103/PhysRevApplied.11.064043
[148] George, J. K. et al. Neuromorphic photonics with electro-absorption modulators. Opt. Express 27, 5181–5191 (2019). doi: 10.1364/OE.27.005181
[149] Williamson, I. A. D. et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 7700412 (2020).
[150] Miscuglio, M. et al. All-optical nonlinear activation function for photonic neural networks [Invited]. Optical Mater. Express 8, 3851–3863 (2018). doi: 10.1364/OME.8.003851
[151] Huang, C. R. et al. Programmable silicon photonic optical thresholder. IEEE Photonics Technol. Lett. 31, 1834–1837 (2019). doi: 10.1109/LPT.2019.2948903
[152] Huang, C. R. et al. On-chip programmable nonlinear optical signal processor and its applications. IEEE J. Sel. Top. Quantum Electron. 27, 6100211 (2021).
[153] Jha, A., Huang, C. R. & Prucnal, P. R. Reconfigurable all-optical nonlinear activation functions for neuromorphic photonics. Opt. Lett. 45, 4819–4822 (2020). doi: 10.1364/OL.398234
[154] Chakraborty, I. et al. Toward fast neural computing using all-photonic phase change spiking neurons. Sci. Rep. 8, 12980 (2018). doi: 10.1038/s41598-018-31365-x
[155] Crnjanski, J. et al. Adaptive sigmoid-like and PReLU activation functions for all-optical perceptron. Opt. Lett. 46, 2003–2006 (2021). doi: 10.1364/OL.422930
[156] Xiang, S. Y. et al. Training a multi-layer photonic spiking neural network with modified supervised learning algorithm based on photonic STDP. IEEE J. Sel. Top. Quantum Electron. 27, 7500109 (2021).
[157] Zhang, Y. H. et al. All-optical neuromorphic binary convolution with a spiking VCSEL neuron for image gradient magnitudes. Photonics Res. 9, B201–B209 (2021).
[158] Shi, B. et al. Multi-wavelength, multi-level inputs for an all-optical SOA-based neuron. In Proceedings of the CLEO: Science and Innovations 2021. (San Jose, California, United States: Optical Society of America, 2021).
[159] Shi, B. et al. Lossless monolithically integrated photonic InP neuron for all-optical computation. In Proceedings of 2020 Optical Fiber Communications Conference and Exhibition (OFC). (San Diego, CA, USA: IEEE, 2020).
[160] Mourgias-Alexandris, G. et al. An all-optical neuron with sigmoid activation function. Opt. Express 27, 9620–9630 (2019). doi: 10.1364/OE.27.009620
[161] Shi, B., Calabretta, N. & Stabile, R. Deep neural network through an InP SOA-based photonic integrated cross-connect. IEEE J. Sel. Top. Quantum Electron. 26, 7701111 (2020).
[162] Vandoorne, K. et al. Parallel reservoir computing using optical amplifiers. IEEE Trans. Neural Netw. 22, 1469–1481 (2011). doi: 10.1109/TNN.2011.2161771
[163] Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014). doi: 10.1038/ncomms4541
[164] Nahmias, M. A. et al. Neuromorphic photonics. Opt. Photonics N. 29, 34–41 (2018).
[165] Friedman, J. H. & Popescu, B. E. Gradient directed regularization for linear regression and classification. (Stanford University, 2004).
[166] Ying, Z. F. et al. Electronic-photonic arithmetic logic unit for high-speed computing. Nat. Commun. 11, 7801311 (2020).
[167] Cheng, J. W. et al. On-chip photonic convolutional accelerator for image processing. In Proceedings of the 26th Optoelectronics and Communications Conference 2021. (Hong Kong, China: OSA, 2021).
[168] Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).
[169] Ying, Z. F. et al. Sequential logic and pipelining in chip-based electronic-photonic digital computing. IEEE Photonics J. 12, 7801311 (2020).
[170] Tait, A. N. Silicon photonic neural networks. PhD thesis, Princeton University, Princeton, 2018.
[171] Nahmias, M. A. et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 7701518 (2020).
[172] Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th annual international symposium on computer architecture. 1–12 (Toronto, ON, Canada: ACM, 2017).
[173] Ankit, A. et al. PUMA: A programmable ultra-efficient memristor-based accelerator for machine learning inference. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. 715–731 (Providence, RI, USA: ACM, 2019).
[174] Shafiee, A. et al. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer Architecture N. 44, 14–26 (2016). doi: 10.1145/3007787.3001139
[175] Ward-Foxton, S. Mythic Resizes its AI Chip. at https://www.eetimes.com/mythic-resizes-its-analog-ai-chip/.