[1] Kim, Y. et al. Nociceptive memristor. Adv. Mater. 30, 1704320 (2018). doi: 10.1002/adma.201704320
[2] Tuma, T. et al. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693-699 (2016). doi: 10.1038/nnano.2016.70
[3] Gu, L. L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278-282 (2020). doi: 10.1038/s41586-020-2285-x
[4] Zhang, K. et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 8, 1782 (2017). doi: 10.1038/s41467-017-01926-1
[5] Pocock, D. C. D. Sight and knowledge. Trans. Inst. Br. Geographers 6, 385-393 (1981). doi: 10.2307/621875
[6] Balasubramanian, V. & Sterling, P. Receptive fields and functional architecture in the retina. J. Physiol. 587, 2753-2767 (2009). doi: 10.1113/jphysiol.2009.170704
[7] Rakshit, T. & Park, P. S. H. Impact of reduced rhodopsin expression on the structure of rod outer segment disc membranes. Biochemistry 54, 2885-2894 (2015). doi: 10.1021/acs.biochem.5b00003
[8] Chai, Y. In-sensor computing for machine vision. Nature 579, 32-33 (2020). doi: 10.1038/d41586-020-00592-6
[9] Bao, L. et al. Artificial shape perception retina network based on tunable memristive neurons. Sci. Rep. 8, 13727 (2018). doi: 10.1038/s41598-018-31958-6
[10] Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62-66 (2020). doi: 10.1038/s41586-020-2038-x
[11] Lichtsteiner, P., Posch, C. & Delbruck, T. A 128×128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43, 566-576 (2008). doi: 10.1109/JSSC.2007.914337
[12] Krestinskaya, O., Salama, K. N. & James, A. P. Automating analogue AI chip design with genetic search. Adv. Intell. Syst. 2, 2000075 (2020). doi: 10.1002/aisy.202000075
[13] Krestinskaya, O., Salama, K. N. & James, A. P. Analog backpropagation learning circuits for memristive crossbar neural networks. In Proceedings of 2018 IEEE International Symposium on Circuits and Systems 1−5 (IEEE, Florence, 2018).
[14] Krestinskaya, O., Salama, K. N. & James, A. P. Learning in memristive neural network architectures using analog backpropagation circuits. IEEE Trans. Circuits Syst. I: Regul. Pap. 66, 719-732 (2019). doi: 10.1109/TCSI.2018.2866510
[15] Wang, Z. R. et al. Capacitive neural network with neuro-transistors. Nat. Commun. 9, 3208 (2018). doi: 10.1038/s41467-018-05677-5
[16] Kholkin, A. L., Iakovlev, S. O. & Baptista, J. L. Direct effect of illumination on ferroelectric properties of lead zirconate titanate thin films. Appl. Phys. Lett. 79, 2055-2057 (2001). doi: 10.1063/1.1402639
[17] Lee, J. et al. Effect of ultraviolet light on fatigue of lead zirconate titanate thin‐film capacitors. Appl. Phys. Lett. 65, 254-256 (1994). doi: 10.1063/1.112617
[18] Poosanaas, P., Tonooka, K. & Uchino, K. Photostrictive actuators. Mechatronics 10, 467-487 (2000). doi: 10.1016/S0957-4158(99)00073-2
[19] Miyasaka, T. & Murakami, T. N. The photocapacitor: an efficient self-charging capacitor for direct storage of solar energy. Appl. Phys. Lett. 85, 3932-3934 (2004). doi: 10.1063/1.1810630
[20] Mokni, M. et al. High-capacity, fast-response, and photocapacitor-based terpolymer phosphor composite. Polymers 12, 349 (2020). doi: 10.3390/polym12020349
[21] Lee, H. et al. Strong photo-amplification effects in flexible organic capacitors with small molecular solid-state electrolyte layers sandwiched between photo-sensitive conjugated polymer nanolayers. Sci. Rep. 6, 19527 (2016). doi: 10.1038/srep19527
[22] Zhang, L. Y. et al. Light enhanced energy storage ability through a hybrid plasmonic Ag nanowire decorated hydroxide "skin structure". Nanoscale 9, 18430-18437 (2017). doi: 10.1039/C7NR04006G
[23] Al-Amri, A. M., Cheng, B. & He, J. H. Perovskite methylammonium lead trihalide heterostructures: progress and challenges. IEEE Trans. Nanotechnol. 18, 1-12 (2019). doi: 10.1109/TNANO.2018.2872887
[24] Zhou, J. C., Chu, Y. L. & Huang, J. Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors. ACS Appl. Mater. Interfaces 8, 25660-25666 (2016). doi: 10.1021/acsami.6b09489
[25] Lin, C. H. et al. Giant optical anisotropy of perovskite nanowire array films. Adv. Funct. Mater. 30, 1909275 (2020). doi: 10.1002/adfm.201909275
[26] Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519-522 (2015). doi: 10.1126/science.aaa2725
[27] Stoumpos, C. C. & Kanatzidis, M. G. Halide perovskites: poor man's high-performance semiconductors. Adv. Mater. 28, 5778-5793 (2016). doi: 10.1002/adma.201600265
[28] Lin, C. H. et al. Orthogonal lithography for halide perovskite optoelectronic nanodevices. ACS Nano 13, 1168-1176 (2019).
[29] Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476-480 (2015). doi: 10.1038/nature14133
[30] Lee, M. M. et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643-647 (2012). doi: 10.1126/science.1228604
[31] Lee, C. P. et al. A paper-based electrode using a graphene dot/PEDOT: PSS composite for flexible solar cells. Nano Energy 36, 260-267 (2017). doi: 10.1016/j.nanoen.2017.04.044
[32] Hwang, K. et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241-1247 (2015). doi: 10.1002/adma.201404598
[33] Leung, S. F. et al. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 30, 1704611 (2018). doi: 10.1002/adma.201704611
[34] Alamri, A. M. et al. Fully inkjet-printed photodetector using a graphene/perovskite/graphene heterostructure. IEEE Trans. Electron Devices 66, 2657-2661 (2019). doi: 10.1109/TED.2019.2911715
[35] Kang, C. H. et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light. : Sci. Appl. 8, 94 (2019). doi: 10.1038/s41377-019-0204-4
[36] Li, F. et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun. 6, 8238 (2015). doi: 10.1038/ncomms9238
[37] Li, Y. T. et al. Millimeter-scale nonlocal photo-sensing based on single-crystal perovskite photodetector. iScience 7, 110-119 (2018). doi: 10.1016/j.isci.2018.08.021
[38] Xing, G. C. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476-480 (2014). doi: 10.1038/nmat3911
[39] Lin, C. H. et al. Designed growth and patterning of perovskite nanowires for lasing and wide color gamut phosphors with long-term stability. Nano Energy 73, 104801 (2020). doi: 10.1016/j.nanoen.2020.104801
[40] Liu, Z. J. et al. Micro-light-emitting diodes with quantum dots in display technology. Light. : Sci. Appl. 9, 83 (2020). doi: 10.1038/s41377-020-0268-1
[41] Ruan, L. X. et al. Properties and applications of the β phase poly (vinylidene fluoride). Polymers 10, 228 (2018). doi: 10.3390/polym10030228
[42] Agambayev, A. et al. Ferroelectric fractional-order capacitors. ChemElectroChem 4, 2807-2813 (2017). doi: 10.1002/celc.201700663
[43] Elshurafa, A. M. et al. Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites. Appl. Phys. Lett. 102, 232901 (2013). doi: 10.1063/1.4809817
[44] Sultana, A. et al. Organo-lead halide perovskite induced electroactive β-phase in porous PVDF films: an excellent material for photoactive piezoelectric energy harvester and photodetector. ACS Appl. Mater. Interfaces 10, 4121-4130 (2018). doi: 10.1021/acsami.7b17408
[45] Yuan, Y. B. et al. Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater. 10, 296-302 (2011). doi: 10.1038/nmat2951
[46] Tsutsumi, N. et al. Re-evaluation of the origin of relaxor ferroelectricity in vinylidene fluoride terpolymers: an approach using switching current measurements. Sci. Rep. 7, 15871 (2017). doi: 10.1038/s41598-017-16017-w
[47] Liu, Y. et al. Relaxor ferroelectric polymers: insight into high electrical energy storage properties from a molecular perspective. Small Sci. 1, 2000061 (2021). doi: 10.1002/smsc.202000061
[48] Chu, B. J. et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334-336 (2006). doi: 10.1126/science.1127798
[49] Christoe, M. J., Han, J. L. & Kalantar-Zadeh, K. Telecommunications and data processing in flexible electronic systems. Adv. Mater. Technol. 5, 1900733 (2020). doi: 10.1002/admt.201900733
[50] Christoe, M. J. et al. Bluetooth signal attenuation analysis in human body tissue analogues. IEEE Access 9, 85144-85150 (2021). doi: 10.1109/ACCESS.2021.3087780
[51] Priante, D. et al. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites. Appl. Phys. Lett. 106, 081902 (2015). doi: 10.1063/1.4913463
[52] Agambayev, A. et al. Tunable fractional-order capacitor using layered ferroelectric polymers. AIP Adv. 7, 095202 (2017). doi: 10.1063/1.4991659
[53] Debnath, T. et al. Halide perovskite solar cells with biocompatibility. Adv. Energy Sustain. Res. 1, 2000028 (2020). doi: 10.1002/aesr.202000028
[54] Sabira, K. et al. Impressive nonlinear optical response exhibited by Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite films. Opt. Laser Technol. 97, 77-83 (2017). doi: 10.1016/j.optlastec.2017.06.008
[55] Agambayev, A. et al. An ultra-broadband single-component fractional-order capacitor using MoS2-ferroelectric polymer composite. Appl. Phys. Lett. 113, 093505 (2018). doi: 10.1063/1.5040345
[56] Agambayev, A. et al. Towards fractional-order capacitors with broad tunable constant phase angles: multi-walled carbon nanotube-polymer composite as a case study. J. Phys. D: Appl. Phys. 51, 065602 (2018). doi: 10.1088/1361-6463/aaa4de
[57] Kartci, A. et al. Synthesis and optimization of fractional-order elements using a genetic algorithm. IEEE Access 7, 80233-80246 (2019). doi: 10.1109/ACCESS.2019.2923166
[58] Gentet, L. J., Stuart, G. J. & Clements, J. D. Direct measurement of specific membrane capacitance in neurons. Biophys. J. 79, 314-320 (2000). doi: 10.1016/S0006-3495(00)76293-X
[59] He, J. et al. Influence of phase transition on stability of perovskite solar cells under thermal cycling conditions. Sol. Energy 188, 312-317 (2019). doi: 10.1016/j.solener.2019.06.025
[60] Fan, H. W. et al. Preparation and characterization of hydrophobic PVDF membranes by vapor-induced phase separation and application in vacuum membrane distillation. J. Polym. Res. 20, 134 (2013). doi: 10.1007/s10965-013-0134-4
[61] Zhang, S. et al. PVDF-HFP additive for visible-light-semitransparent perovskite films yielding enhanced photovoltaic performance. Sol. Energy Mater. Sol. Cells 170, 178-186 (2017). doi: 10.1016/j.solmat.2017.05.057
[62] Wang, Q. et al. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734-6739 (2016). doi: 10.1002/adma.201600969
[63] Cuthbertson, F. M. et al. Blue light-filtering intraocular lenses: review of potential benefits and side effects. J. Cataract Refractive Surg. 35, 1281-1297 (2009). doi: 10.1016/j.jcrs.2009.04.017
[64] Kuku, T. A. Ionic transport and galvanic cell discharge characteristics of CuPbI3 thin films. Thin Solid Films 325, 246-250 (1998). doi: 10.1016/S0040-6090(98)00430-1
[65] Kuku, T. A. & Salau, A. M. Electrical conductivity of CuSnI3, CuPbI3, and KPbI3. Solid State Ion. 25, 1-7 (1987). doi: 10.1016/0167-2738(87)90171-8
[66] Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668-673 (2014). doi: 10.1126/science.1254642
[67] Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82-99 (2018). doi: 10.1109/MM.2018.112130359
[68] Maheswaranathan, N. et al. Deep learning models reveal internal structure and diverse computations in the retina under natural scenes. Preprint at bioRxiv https://doi.org/10.1101/340943 (2018).
[69] Masquelier, T. & Thorpe, S. J. Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput. Biol. 3, e31 (2007). doi: 10.1371/journal.pcbi.0030031
[70] Guo, W. Z. et al. Unsupervised adaptive weight pruning for energy-efficient neuromorphic systems. Front. Neurosci. 14, 598876 (2020). doi: 10.3389/fnins.2020.598876
[71] Diehl, P. U. & Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015).
[72] Zenke, F. & Ganguli, S. SuperSpike: supervised learning in multilayer spiking neural networks. Neural Comput. 30, 1514-1541 (2018). doi: 10.1162/neco_a_01086
[73] Kaiser, J., Mostafa, H. & Neftci, E. Synaptic plasticity dynamics for deep continuous local learning (DECOLLE). Front. Neurosci. 14, 424 (2020). doi: 10.3389/fnins.2020.00424
[74] Ghoneim, M. T. et al. Thin PZT-based ferroelectric capacitors on flexible silicon for nonvolatile memory applications. Adv. Electron. Mater. 1, 1500045 (2015). doi: 10.1002/aelm.201500045
[75] Ghoneim, M. T. et al. Towards neuromorphic electronics: memristors on foldable silicon fabric. Microelectron. J. 45, 1392-1395 (2014). doi: 10.1016/j.mejo.2014.07.011