[1] |
Moses, E. I. et al. The national ignition facility: ushering in a new age for high energy density science. Physics of Plasmas 16, 041006 (2009). doi: 10.1063/1.3116505 |
[2] |
Zheng, W. G. et al. Laser performance of the SG-III laser facility. High Power Laser Science and Engineering 4, e21 (2016). doi: 10.1017/hpl.2016.20 |
[3] |
Néauport, J. et al. Megajoule laser project and polishing processes for high laser induced damage threshold at 351 nm. Proceedings of SPIE 5965, Optical Fabrication, Testing, and Metrology II. Jena, Germany: SPIE, 2005, 59650N. |
[4] |
Yang, D. H. et al. Unveiling sub-bandgap energy-level structures on machined optical surfaces based on weak photo-luminescence. Nanoscale 15, 18250-18264 (2023). doi: 10.1039/D3NR03488G |
[5] |
Baisden, P. A. et al. Large optics for the national ignition facility. Fusion Science and Technology 69, 295-351 (2016). doi: 10.13182/FST15-143 |
[6] |
De Yoreo, J. J., Burnham, A. K. & Whitman, P. K. Developing KH2PO4 and KD2PO4 crystals for the world's most power laser. International Materials Reviews 47, 113-152 (2002). doi: 10.1179/095066001225001085 |
[7] |
Manes, K. R. et al. Damage mechanisms avoided or managed for NIF large optics. Fusion Science and Technology 69, 146-249 (2016). doi: 10.13182/FST15-139 |
[8] |
Chen, M. J. et al. Recent advances in laser-induced surface damage of KH2PO4 crystal. Applied Sciences 10, 6642 (2020). doi: 10.3390/app10196642 |
[9] |
Hou, N. et al. On the ultra-precision fabrication of damage-free optical KDP components: mechanisms and problems. Critical Reviews in Solid State and Materials Sciences 44, 283-297 (2019). doi: 10.1080/10408436.2018.1490247 |
[10] |
Ding, W. Y. et al. Determination of stress waves and their effect on the damage extension induced by surface defects of KDP crystals under intense laser irradiation. Optica 10, 671-681 (2023). doi: 10.1364/OPTICA.485240 |
[11] |
Spaeth, M. L. et al. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold. Fusion Science and Technology 69, 265-294 (2016). doi: 10.13182/FST15-119 |
[12] |
Clery, D. Laser fusion reactor approaches 'burning plasma' milestone. Science 370, 1019-1020 (2020). doi: 10.1126/science.370.6520.1019 |
[13] |
Di Nicola, J. M. et al. The national ignition facility: laser performance status and performance quad results at elevated energy. Nuclear Fusion 59, 032004 (2019). doi: 10.1088/1741-4326/aac69e |
[14] |
Yang, Z. C. et al. Evolution of intrinsic defects and ring structures on the surface of fused silica optics after CO2 laser conditioning. Optics Letters 48, 5727-5730 (2023). doi: 10.1364/OL.500368 |
[15] |
Ding, W. Y. et al. Determination of intrinsic defects of functional KDP crystals with flawed surfaces and their effect on the optical properties. Nanoscale 14, 10041-10050 (2022). doi: 10.1039/D2NR01862D |
[16] |
Ding, W. Y. et al. Concentration characterization of underlying intrinsic defects accompany with surface structural defects and their effect on laser damage resistance. Applied Surface Science 643, 158678 (2024). doi: 10.1016/j.apsusc.2023.158678 |
[17] |
Carr, C. W. et al. Localized dynamics during laser-induced damage in optical materials. Physical Review Letters 92, 087401 (2004). doi: 10.1103/PhysRevLett.92.087401 |
[18] |
Manenkov, A. A. Fundamental mechanisms of laser-induced damage in optical materials: today's state of understanding and problems. Optical Engineering 53, 010901 (2014). doi: 10.1117/1.OE.53.1.010901 |
[19] |
Papernov, S. & Schmid, A. W. Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects. Journal of Applied Physics 97, 114906 (2005). doi: 10.1063/1.1924878 |
[20] |
Cheng, J. et al. Particle simulation of the initial dynamic damage behaviors of KDP crystals under intense laser irradiation. Proceedings of SPIE 11910, Laser-Induced Damage in Optical Materials 2021. Online: SPIE, 2021, 119101W. |
[21] |
Tian, Y. et al. Characteristics of laser-induced surface damage on large-aperture KDP crystals at 351 nm. Chinese Physics Letters 32, 027801 (2015). doi: 10.1088/0256-307X/32/2/027801 |
[22] |
Koldunov, M. F. & Manenkov, A. A. Theory of laser-induced inclusion-initiated damage in optical materials. Optical Engineering 51, 121811 (2012). |
[23] |
Ding, W. Y. et al. Quantitative identification of deposited energy in UV-transmitted KDP crystals from perspectives of electronic defects, atomic structure and sub-bandgap disturbance. Journal of Materials Chemistry C 12, 4699-4710 (2024). doi: 10.1039/D3TC04382G |
[24] |
Stuart, B. C. et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Physical Review Letters 74, 2248-2251 (1995). doi: 10.1103/PhysRevLett.74.2248 |
[25] |
Balling, P. & Schou, J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films. Reports on Progress in Physics 76, 036502 (2013). doi: 10.1088/0034-4885/76/3/036502 |
[26] |
Ding, W. Y. et al. Laser damage evolution by defects on diamond fly-cutting KDP surfaces. International Journal of Mechanical Sciences 237, 107794 (2023). doi: 10.1016/j.ijmecsci.2022.107794 |
[27] |
Wang, S. F. et al. Influences of surface defects on the laser-induced damage performances of KDP crystal. Applied Optics 57, 2638-2646 (2018). doi: 10.1364/AO.57.002638 |
[28] |
Cheng, J. et al. Influence of surface cracks on laser-induced damage resistance of brittle KH2PO4 crystal. Optics Express 22, 28740-28755 (2014). doi: 10.1364/OE.22.028740 |
[29] |
Demos, S. G. et al. Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals. Optics Express 18, 13788-13804 (2010). doi: 10.1364/OE.18.013788 |
[30] |
Gao, H. et al. Effect of S substitution for P point defects in KDP crystals: first-principles study. Chinese Physics Letters 27, 073101 (2010). doi: 10.1088/0256-307X/27/7/073101 |
[31] |
Gao, H. et al. Effect of Ba in KDP crystal on the wavelength dependence of laser-induced damage. Chinese Optics Letters 9, 091402 (2011). doi: 10.3788/COL201109.091402 |
[32] |
Salter, E. A. , Wierzbicki, A. & Land, T. Ab initio study of AL(III) adsorption on stepped 100 surfaces of KDP crystals. Structural Chemistry 16, 111-116 (2005). |
[33] |
Feigenbaum, E. et al. Laser-induced Hertzian fractures in silica initiated by metal micro-particles on the exit surface. Optics Express 24, 10527-10536 (2016). doi: 10.1364/OE.24.010527 |
[34] |
Raman, R. N. et al. Damage on fused silica optics caused by laser ablation of surface-bound microparticles. Optics Express 24, 2634-2647 (2016). doi: 10.1364/OE.24.002634 |
[35] |
Matthews, M. J. et al. Laser-matter coupling mechanisms governing particulate-induced damage on optical surfaces. Proceedings of SPIE 10014, Laser-Induced Damage in Optical Materials 2016. Boulder, CO, USA: SPIE, 2015, 1001402. |
[36] |
Negres, R. A. et al. Overview of laser damage performance of the third-harmonic frequency conversion crystals on the national ignition facility. Proceedings of SPIE 10805, Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference. Boulder, CO, USA: SPIE, 2018, 1080520. |
[37] |
Miller, C. F. et al. Characterization and repair of small damage sites and their impact on the lifetime of fused silica optics on the national ignition facility. Proceedings of SPIE 10805, Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference. Boulder, CO, USA: SPIE, 2018, 108051D. |
[38] |
Demos, S. G. et al. Mechanisms to explain damage growth in optical materials. Proceedings of SPIE 4347, Laser-Induced Damage in Optical Materials: 2000. Boulder, CO, USA: SPIE, 2000, 277-284. |
[39] |
Demos, S. G., Staggs, M. & Kozlowski, M. R. Investigation of processes leading to damage growth in optical materials for large-aperture lasers. Applied Optics 41, 3628-3633 (2002). doi: 10.1364/AO.41.003628 |
[40] |
Shan, C. et al. Damage growth characteristics on the exit surface of fused silica by the low-temporal coherence light irradiation. Optics Express 32, 25403-25419 (2024). doi: 10.1364/OE.529720 |
[41] |
Wu, P. C. et al. Ultraviolet laser-induced damage characteristics of 70% deuterated potassium dihydrogen phosphate crystals. Optical Materials Express 12, 2759-2771 (2022). doi: 10.1364/OME.459494 |
[42] |
Guillet, F. et al. Preliminary results on mitigation of KDP surface damage using the ball dimpling method. Proceedings of SPIE 6720, Laser-Induced Damage in Optical Materials: 2007. Boulder, CO, USA: SPIE, 2007, 672008. |
[43] |
Ma, B. et al. Damage growth characteristics of different initial damage sites of fused silica under 355 nm small laser beam irradiation. Optics & Laser Technology 57, 136-144 (2014). |
[44] |
Demos, S. G., Raman, R. N. & Negres, R. A. Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses. Optics Express 21, 4875-4888 (2013). doi: 10.1364/OE.21.004875 |
[45] |
Spaeth, M. L. et al. Description of the NIF laser. Fusion Science and Technology 69, 25-145 (2016). doi: 10.13182/FST15-144 |
[46] |
Zhang, Y., Hou, N. & Zhang, L. C. Understanding the formation mechanism of subsurface damage in potassium dihydrogen phosphate crystals during ultra-precision fly cutting. Advances in Manufacturing 7, 270-277 (2019). doi: 10.1007/s40436-019-00265-2 |
[47] |
Huang, W. H. & Yan, J. W. Effect of tool geometry on ultraprecision machining of soft-brittle materials: a comprehensive review. International Journal of Extreme Manufacturing 5, 012003 (2023). doi: 10.1088/2631-7990/acab3f |
[48] |
Chen, M. J. et al. Study on the optical performance and characterization method of texture on KH2PO4 surface processed by single point diamond turning. Applied Surface Science 279, 233-244 (2013). doi: 10.1016/j.apsusc.2013.04.073 |
[49] |
Liu, Q. et al. Mechanism of chip formation and surface-defects in orthogonal cutting of soft-brittle potassium dihydrogen phosphate crystals. Materials & Design 198, 109327 (2021). |
[50] |
Campbell, J. H. et al. NIF optical materials and fabrication technologies: an overview. Proceedings of SPIE 5341, Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility. San Jose, CA, USA: SPIE, 2004, 84-101. |
[51] |
Gao, H. et al. Experimental study on abrasive-free polishing for KDP crystal. Journal of the Electrochemical Society 157, H853-H856 (2010). doi: 10.1149/1.3458869 |
[52] |
Dong, H. et al. KDP aqueous solution-in-oil microemulsion for ultra-precision chemical-mechanical polishing of KDP crystal. Materials 10, 271 (2017). doi: 10.3390/ma10030271 |
[53] |
Gao, H., Song, C. P. & Guo, D. M. Principle of ultra precision polishing with micro water mist for KDP/DKDP crystals. International Journal of Nanomanufacturing 11, 150-160 (2015). doi: 10.1504/IJNM.2015.071916 |
[54] |
Guo, S. L. et al. Research on deliquescent polishing fluid for KDP crystals. Materials Science Forum 626-627, 53-58 (2009). |
[55] |
Wang, X., Gao, H. & Yuan, J. L. Experimental investigation and analytical modelling of the tool influence function of the ultra-precision numerical control polishing method based on the water dissolution principle for KDP crystals. Precision Engineering 65, 185-196 (2020). doi: 10.1016/j.precisioneng.2020.04.014 |
[56] |
Wang, B. L. & Gao, H. Experimental study on KDP crystal polishing. Proceedings of SPIE 6722, 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. Chengdu, China: SPIE, 2007, 672209. |
[57] |
Wang, X. et al. Experimental study on micro-deliquescence ultra-precision polishing with fine water mist for KDP crystal. Advanced Materials Research 797, 423-427 (2013). doi: 10.4028/www.scientific.net/AMR.797.423 |
[58] |
Liu, Z. Y., Gao, H. & Guo, D. M. Polishing technique for KDP crystal based on two-phase air-water fluid. Precision Engineering 56, 404-411 (2019). doi: 10.1016/j.precisioneng.2019.01.009 |
[59] |
Zhang, F. H. et al. Research on the material removal mechanism in deliquescent polishing of KDP crystals. Key Engineering Materials 416, 487-491 (2009). doi: 10.4028/www.scientific.net/KEM.416.487 |
[60] |
Wang, B. L., Li, Y. Z. & Gao, H. Water-in-oil dispersion for KH2PO4 (KDP) crystal CMP. Journal of Dispersion Science and Technology 31, 1611-1617 (2010). doi: 10.1080/01932690903297330 |
[61] |
Cheng, Z. P. et al. Study on the groove geometry of pad in water dissolution polishing of soft brittle materials based on trajectory analysis. Precision Engineering 91, 290-299 (2024). doi: 10.1016/j.precisioneng.2024.09.017 |
[62] |
Wang, X. et al. Effect of wetting characteristics of polishing fluid on the quality of water-dissolution polishing of KDP crystals. Micromachines 13, 535 (2022). doi: 10.3390/mi13040535 |
[63] |
Chen, Y. C. et al. Investigation on the cleaning of KDP ultra-precision surface polished with micro water dissolution machining principle. Science China Technological Sciences 60, 27-35 (2017). doi: 10.1007/s11431-016-0469-0 |
[64] |
Cheng, Z. P. et al. A novel water dissolution combined continuous polishing for soft-brittle crystals. The International Journal of Advanced Manufacturing Technology 134, 2479-2495 (2024). doi: 10.1007/s00170-024-14284-2 |
[65] |
Liu, Z. Y., Gao, H. & Guo, D. M. Experimental study on high-efficiency polishing for potassium dihydrogen phosphate (KDP) crystal by using two-phase air-water fluid. Frontiers of Mechanical Engineering 15, 294-302 (2020). doi: 10.1007/s11465-019-0576-4 |
[66] |
Liu, Z. Y., Gao, H. & Guo, D. M. A novel approach of precision polishing for KDP crystal based on the reversal growth property. Precision Engineering 53, 1-8 (2018). doi: 10.1016/j.precisioneng.2017.12.012 |
[67] |
Zhang, H. P. et al. Simulation of large scale KDP crystal polishing by computer controlled micro-Nano deliquescence. Advanced Materials Research 497, 165-169 (2012). doi: 10.4028/www.scientific.net/AMR.497.165 |
[68] |
Gao, H. et al. Micro water dissolution machining principle and its application in ultra-precision processing of KDP optical crystal. Science China Technological Sciences 58, 1877-1883 (2015). doi: 10.1007/s11431-015-5866-4 |
[69] |
Wang, X. et al. A water dissolution method for removing micro-waviness caused by SPDT process on KDP crystals. The International Journal of Advanced Manufacturing Technology 85, 1347-1360 (2016). doi: 10.1007/s00170-015-8019-9 |
[70] |
Chen, Y. C. et al. Laser induced damage of potassium dihydrogen phosphate (KDP) optical crystal machined by water dissolution ultra-precision polishing method. Materials 11, 419 (2018). doi: 10.3390/ma11030419 |
[71] |
Cheng, Z. P. et al. Investigation of the trajectory uniformity in water dissolution ultraprecision continuous polishing of large-sized KDP crystal. International Journal of Extreme Manufacturing 2, 045101 (2020). doi: 10.1088/2631-7990/abaabe |
[72] |
Baxamusa, S., Ehrmann, P. & Ong, J. Acoustic activation of water-in-oil microemulsions for controlled salt dissolution. Journal of Colloid and Interface Science 529, 366-374 (2018). doi: 10.1016/j.jcis.2018.06.032 |
[73] |
Baxamusa, S. et al. Novel etching fluids for potassium dihydrogen phosphate. Proceedings of SPIE 10805, Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference. Boulder, CO, USA: SPIE, 2018, 108051G. |
[74] |
Li, Z. Y. et al. A novel water-in-deep eutectic solvent microemulsions for chemical polishing of single crystal KDP. Journal of Colloid and Interface Science 677, 896-903 (2025). doi: 10.1016/j.jcis.2024.08.113 |
[75] |
Cheng, Z. P. et al. Material removal uniformity in water dissolution ultraprecision continuous polishing for large-size water-soluble crystals. Chinese Journal of Mechanical Engineering 37, 145 (2024). doi: 10.1186/s10033-024-01127-0 |
[76] |
Chen, F. J. et al. A review on recent advances in machining methods based on abrasive jet polishing (AJP). The International Journal of Advanced Manufacturing Technology 90, 785-799 (2017). doi: 10.1007/s00170-016-9405-7 |
[77] |
Thongkaew, K., Wang, J. & Yeoh, G. H. Impact characteristics and stagnation formation on a solid surface by a supersonic abrasive waterjet. International Journal of Extreme Manufacturing 1, 045004 (2019). doi: 10.1088/2631-7990/ab531c |
[78] |
Nguyen, T. & Wang, J. A review on the erosion mechanisms in abrasive waterjet micromachining of brittle materials. International Journal of Extreme Manufacturing 1, 012006 (2019). doi: 10.1088/2631-7990/ab1028 |
[79] |
Urban, N. D. et al. Performance characterization of freeform finished surfaces of potassium dihydrogen phosphate using fluid jet polishing with a nonaqueous slurry. Scientific Reports 13, 6524 (2023). doi: 10.1038/s41598-023-33695-x |
[80] |
Gao, W. et al. Mitigation of subsurface damage in potassium dihydrogen phosphate (KDP) crystals with a novel abrasive-free jet process. Optical Materials Express 8, 2625-2635 (2018). doi: 10.1364/OME.8.002625 |
[81] |
Gao, W. et al. Novel abrasive-free jet polishing mechanism for potassium dihydrogen phosphate (KDP) crystal. Optical Materials Express 8, 1012-1024 (2018). doi: 10.1364/OME.8.001012 |
[82] |
Gao, W. et al. Theoretical modeling and analysis of material removal characteristics for KDP crystal in abrasive-free jet processing. Optics Express 27, 6268-6282 (2019). doi: 10.1364/OE.27.006268 |
[83] |
Zhang, Y. et al. Novel abrasive-free jet polishing for bulk single-crystal KDP with a low viscosity microemulsion. Scientific Reports 12, 8346 (2022). doi: 10.1038/s41598-022-12447-3 |
[84] |
Zhang, Y. et al. Investigation and modeling of orientation-determined removal characteristics of KDP crystal in microemulsion abrasive-free jet polishing from nano to macro scale. Optical Materials Express 14, 51-69 (2024). |
[85] |
Chen, S. S. et al. Influence law of structural characteristics on the surface roughness of a magnetorheological-finished KDP crystal. Applied Optics 53, 7215-7223 (2014). doi: 10.1364/AO.53.007215 |
[86] |
Menapace, J. A. , Ehrmann, P. R. & Bickel, R. C. Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: nonaqueous fluids development, optical finish, and laser damage performance at 1064 nm and 532 nm. Proceedings of SPIE 7504, Laser-Induced Damage in Optical Materials: 2009. Boulder, CO, USA: SPIE, 2009, 750414. |
[87] |
Jacobs, S. D. Manipulating mechanics and chemistry in precision optics finishing. Science and Technology of Advanced Materials 8, 153-157 (2007). doi: 10.1016/j.stam.2006.12.002 |
[88] |
Golini, D. et al. Magnetorheological finishing (MRF) in commercial precision optics manufacturing. Proceedings of SPIE 3782, Optical Manufacturing and Testing III. Denver, CO, USA: SPIE, 1999, 80-91. |
[89] |
Zhang, Y. F. et al. Polishing technique for potassium dihydrogen phosphate crystal based on magnetorheological finishing. Procedia CIRP 71, 21-26 (2018). doi: 10.1016/j.procir.2018.05.012 |
[90] |
Peng, X. Q. et al. Novel magnetorheological figuring of KDP crystal. Chinese Optics Letters 9, 102201 (2011). doi: 10.3788/COL201109.102201 |
[91] |
Miao, C. L. et al. Shear stress in magnetorheological finishing for glasses. Applied Optics 48, 2585-2594 (2009). doi: 10.1364/AO.48.002585 |
[92] |
Arrasmith, S. R. et al. Details of the polishing spot in magnetorheological finishing (MRF). Proceedings of SPIE 3782, Optical Manufacturing and Testing III. Denver, CO, USA: SPIE, 1999, 92-100. |
[93] |
Wang, C. et al. The particle behavior analysis and design in the improvement of KDP finishing. Proceedings of SPIE 9532, Pacific Rim Laser Damage 2015: Optical Materials for High-Power Lasers. Shanghai, China: SPIE, 2015, 95321Z. |
[94] |
Chen, S. S. et al. Analysis of surface quality and processing optimization of magnetorheological polishing of KDP crystal. Journal of Optics 44, 384-390 (2015). doi: 10.1007/s12596-015-0272-7 |
[95] |
Ji, F. et al. Preparation of methoxyl poly(ethylene glycol) (MPEG)-coated carbonyl iron particles (CIPs) and their application in potassium dihydrogen phosphate (KDP) magnetorheological finishing (MRF). Applied Surface Science 353, 723-727 (2015). doi: 10.1016/j.apsusc.2015.06.063 |
[96] |
Chen, S. S. et al. Analysis of the convergence rules of full-range PSD surface error of magnetorheological figuring KDP crystal. Applied Optics 55, 8056-8062 (2016). doi: 10.1364/AO.55.008056 |
[97] |
Zhang, Y. F. et al. Effects of temperature on the removal efficiency of KDP crystal during the process of magnetorheological water-dissolution polishing. Applied Optics 55, 8308-8315 (2016). doi: 10.1364/AO.55.008308 |
[98] |
Yin, Y. H. et al. Novel magneto-rheological finishing process of KDP crystal by controlling fluid-crystal temperature difference to restrain deliquescence. CIRP Annals 67, 587-590 (2018). doi: 10.1016/j.cirp.2018.04.058 |
[99] |
Chen, S. S. et al. Research of polishing process to control the iron contamination on the magnetorheological finished KDP crystal surface. Applied Optics 54, 1478-1484 (2015). doi: 10.1364/AO.54.001478 |
[100] |
Shi, F. et al. Improvement of surface laser damage resistance of KDP crystal under combined machining process. Optical Engineering 57, 121911 (2019). |
[101] |
Ji, F. et al. The magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystal with Fe3O4 nanoparticles. Nanoscale Research Letters 11, 79 (2016). doi: 10.1186/s11671-016-1301-4 |
[102] |
Yuan, Z. et al. Cleaning of iron powders embedded into the surface of KDP crystal by ion beam figuring. Journal of Synthetic Crystals 42, 582-586,597 (2013). |
[103] |
Belov, D. V. et al. Preparation of nanoabrasive for magnetorheological polishing of KDP crystals. Colloid Journal 86, 505-518 (2024). doi: 10.1134/S1061933X24600477 |
[104] |
Schaefer, D. Basics of ion beam figuring and challenges for real optics treatment. Proceedings of SPIE 10829, Fifth European Seminar on Precision Optics Manufacturing. Teisnach, Germany: SPIE, 2018, 1082907. |
[105] |
Xiao, Q. et al. Effect of ion beam figuring on laser damage properties of KDP crystal. Proceedings of SPIE 10339, Pacific Rim Laser Damage 2017: Optical Materials for High-Power Lasers. Shanghai, China: SPIE, 2017, 103391Y. |
[106] |
Lin, Z. F. et al. Study on the feasibility of ion beam figuring on DKDP crystal. Proceedings of SPIE 10697, Fourth Seminar on Novel Optoelectronic Detection Technology and Application. Nanjing, China: SPIE, 2018, 106974S. |
[107] |
Li, F. R. et al. Research on temperature field of KDP crystal under ion beam cleaning. Applied Optics 55, 4888-4894 (2016). doi: 10.1364/AO.55.004888 |
[108] |
Li, F. R. et al. Figuring process of potassium dihydrogen phosphate crystal using ion beam figuring technology. Applied Optics 56, 7130-7137 (2017). doi: 10.1364/AO.56.007130 |
[109] |
Shu, Y. et al. Study on surface roughness of KDP crystal in ion beam figuring. Journal of Synthetic Crystals 40, 838-842 (2011). |
[110] |
Hrubesh, L. W. et al. Methods for mitigating growth of laser-initiated surface damage on DKDP optics at 351 nm. Proceedings of SPIE 4932, Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization. Boulder, CO, USA: SPIE, 2002, 180-191. |
[111] |
Zhao, L. J. et al. Research on precision automatic tool setting technology for KDP crystal surface damage mitigation based on machine vision. Journal of Manufacturing Processes 64, 750-757 (2021). doi: 10.1016/j.jmapro.2021.02.012 |
[112] |
Hrubesh, L. et al. Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micromachining. Proceedings of SPIE 5273, Laser-Induced Damage in Optical Materials: 2003. Boulder, CO, USA: SPIE, 2004, 273-280. |
[113] |
Geraghty, P. et al. Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring. Proceedings of SPIE 6403, Laser-Induced Damage in Optical Materials: 2006. Boulder, CO, USA: SPIE, 2007, 64030Q. |
[114] |
Liu, Q. et al. Modeling of residual tool mark formation and its influence on the optical performance of KH2PO4 optics repaired by micro-milling. Optical Materials Express 9, 3789-3807 (2019). doi: 10.1364/OME.9.003789 |
[115] |
Cheng, J. et al. Development of optimal mitigation contours and their machining flow by micro-milling to improve the laser damage resistance of KDP crystal. Proceedings of SPIE 10447, Laser-Induced Damage in Optical Materials 2017. Boulder, CO, USA: SPIE, 2017, 104471L. |
[116] |
Liu, Q. et al. Effect of tool inclination on surface quality of KDP crystal processed by micro ball-end milling. The International Journal of Advanced Manufacturing Technology 99, 2777-2788 (2018). doi: 10.1007/s00170-018-2622-5 |
[117] |
Chen, N. et al. Effect of cutting parameters on surface quality in ductile cutting of KDP crystal using self-developed micro PCD ball end mill. International Journal of Advanced Manufacturing Technology 78, 221-229 (2015). doi: 10.1007/s00170-014-6623-8 |
[118] |
Liu, Q. et al. Effect of milling modes on surface integrity of KDP crystal processed by micro ball-end milling. Procedia CIRP 71, 260-266 (2018). doi: 10.1016/j.procir.2018.05.060 |
[119] |
Chen, N. et al. The design and optimization of micro polycrystalline diamond ball end mill for repairing micro-defects on the surface of KDP crystal. Precision Engineering 43, 345-355 (2016). doi: 10.1016/j.precisioneng.2015.08.015 |
[120] |
Chen, N. et al. Research in minimum undeformed chip thickness and size effect in micro end-milling of potassium dihydrogen phosphate crystal. International Journal of Mechanical Sciences 134, 387-398 (2017). doi: 10.1016/j.ijmecsci.2017.10.025 |
[121] |
Elhadj, S. et al. Scalable process for mitigation of laser-damaged potassium dihydrogen phosphate crystal optic surfaces with removal of damaged antireflective coating. Applied Optics 56, 2217-2225 (2017). doi: 10.1364/AO.56.002217 |
[122] |
Liu, Q. et al. Incident laser modulation by tool marks on micro-milled KDP crystal surface: numerical simulation and experimental verification. Optics & Laser Technology 119, 105610 (2019). |
[123] |
Xiao, Y. et al. Effect of structural parameters of Gaussian repaired pit on light intensity distribution inside KH2PO4 crystal. Chinese Physics B 23, 087702 (2014). doi: 10.1088/1674-1056/23/8/087702 |
[124] |
Yang, H. et al. Potential damage threats to downstream optics caused by Gaussian mitigation pits on rear KDP surface. High Power Laser Science and Engineering 8, e37 (2020). doi: 10.1017/hpl.2020.37 |
[125] |
Yang, H. et al. Optimization of morphological parameters for mitigation pits on rear KDP surface: experiments and numerical modeling. Optics Express 25, 18332-18345 (2017). doi: 10.1364/OE.25.018332 |
[126] |
Cheng, J. et al. Fabrication of spherical mitigation pit on KH2PO4 crystal by micro-milling and modeling of its induced light intensification. Optics Express 21, 16799-16813 (2013). doi: 10.1364/OE.21.016799 |
[127] |
Chen, M. J. et al. Role of tool marks inside spherical mitigation pit fabricated by micro-milling on repairing quality of damaged KH2PO4 crystal. Scientific Reports 5, 14422 (2015). doi: 10.1038/srep14422 |
[128] |
Cheng, J. et al. Effect of surface scallop tool marks generated in micro-milling repairing process on the optical performance of potassium dihydrogen phosphate crystal. Materials & Design 157, 447-456 (2018). |
[129] |
Lei, H. Q. et al. Material removal mechanisms affected by milling modes for defective KDP surfaces. CIRP Journal of Manufacturing Science and Technology 48, 67-83 (2024). doi: 10.1016/j.cirpj.2023.11.008 |
[130] |
Lei, H. Q. et al. Evolution of brittle-ductile transition and size effect in the micro-milling repairing process of soft-brittle KDP crystal with surface defect. Journal of Manufacturing Processes 113, 215-229 (2024). doi: 10.1016/j.jmapro.2024.01.076 |
[131] |
Lei, H. Q. et al. Investigation on machining performance of soft-brittle KDP crystals with surface micro-defects in the ball-end milling repairing process. Sustainable Materials and Technologies 40, e00884 (2024). doi: 10.1016/j.susmat.2024.e00884 |
[132] |
Fang, F. Z. et al. Towards atomic and close-to-atomic scale manufacturing. International Journal of Extreme Manufacturing 1, 012001 (2019). doi: 10.1088/2631-7990/ab0dfc |
[133] |
Mathew, G. et al. Site-selective biofunctionalization of 3D microstructures via direct ink writing. Small 20, 2404429 (2024). doi: 10.1002/smll.202404429 |
[134] |
Piner, R. D. et al. "Dip-pen" nanolithography. Science 283, 661-663 (1999). |
[135] |
Elhadj, S., Chernov, A. A. & De Yoreo, J. J. Solvent-mediated repair and patterning of surfaces by AFM. Nanotechnology 19, 105304 (2008). doi: 10.1088/0957-4484/19/10/105304 |
[136] |
Chung, S. W. et al. Scanning probe-based fabrication of 3D nanostructures via affinity templates, functional RNA, and meniscus-mediated surface remodeling. Scanning 30, 159-171 (2008). doi: 10.1002/sca.20086 |
[137] |
Chen, G. et al. Prediction of nanoscale water meniscus shape between deliquescent KDP crystal optics and AFM probe for water-dissolution repairing. Langmuir 39, 18548-18557 (2023). doi: 10.1021/acs.langmuir.3c02889 |
[138] |
Chen, G. et al. Dynamic behaviors of capillary water menisci during lithography process for dip-pen nanolithography. Colloids and Surfaces A: Physicochemical and Engineering Aspects 707, 135908 (2025). doi: 10.1016/j.colsurfa.2024.135908 |
[139] |
Chen, G. et al. Ion adsorption-enrichment effect and its driving mechanism for Nano-dots lithography with SPM probe on water-soluble crystal surfaces. Journal of Colloid and Interface Science 678, 50-66 (2025). doi: 10.1016/j.jcis.2024.08.227 |