[1] Le Bel JA. Sur les relations qui existent entre les formules atomiques des corps organiques et le pouvoir rotatoire de leurs dissolutions. Bull Soc Chim 1874; 22: 337–347.
[2] Hazen RM, Sholl DS. Chiral selection on inorganic crystalline surfaces. Nat Mater 2003; 2: 367–374. doi: 10.1038/nmat879
[3] Sharma V, Crne M, Park JO, Srinivasarao M. Structural origin of circularly polarized iridescence in jeweled beetles. Science 2009; 325: 449–451. doi: 10.1126/science.1172051
[4] Pályi G, Zucchi C, Caglioti L. Advances in Biochirality. Amsterdam: Elsevier, 1999.
[5] Boltasseva A, Atwater HA. Low-loss plasmonic metamaterials. Science 2011; 331: 290–291. doi: 10.1126/science.1198258
[6] Shalaev VM. Optical negative-index metamaterials. Nat Photonics 2007; 1: 41–48. doi: 10.1038/nphoton.2006.49
[7] Soukoulis CM, Wegener M. Optical metamaterials—more bulky and less lossy. Science 2010; 330: 1633–1634. doi: 10.1126/science.1198858
[8] Soukoulis CM, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics 2011; 5: 523–530. doi: 10.1038/nphoton.2011.154
[9] Zhou JF, Chowdhury DR, Zhao RK, Azad AK, Chen H-T et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys Rev B 2012; 86: 035448. doi: 10.1103/PhysRevB.86.035448
[10] Decker M, Zhao R, Soukoulis CM, Linden S, Wegener M. Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt Lett 2010; 35: 1593–1595. doi: 10.1364/OL.35.001593
[11] Gansel JK, Thiel M, Rill MS, Decker M, Bade K et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009; 325: 1513–1515. doi: 10.1126/science.1177031
[12] Raybould T, Fedotov VA, Papasimakis N, Kuprov I, Youngs IJ et al. Toroidal circular dichroism. Phys Rev B 2016; 94: 035119. doi: 10.1103/PhysRevB.94.035119
[13] Plum E, Zhou J, Dong J, Fedotov VA, Koschny T et al. Metamaterial with negative index due to chirality. Phys Rev B 2009; 79: 035407. doi: 10.1103/PhysRevB.79.035407
[14] Zhou JF, Dong JF, Wang BN, Koschny T, Kafesaki M et al. Negative refractive index due to chirality. Phys Rev B 2009; 79: 121104. doi: 10.1103/PhysRevB.79.121104
[15] Zhang S, Park Y-S, Li J, Lu XC, Zhang WL et al. Negative refractive index in chiral metamaterials. Phys Rev Lett 2009; 102: 023901. doi: 10.1103/PhysRevLett.102.023901
[16] Wang BN, Zhou JF, Koschny T, Soukoulis CM. Nonplanar chiral metamaterials with negative index. Appl Phys Lett 2009; 94: 151112. doi: 10.1063/1.3120565
[17] Liu N, Liu H, Zhu SN, Giessen H. Stereometamaterials. Nat Photonics 2009; 3: 157–162. doi: 10.1038/nphoton.2009.4
[18] Kuzyk A, Schreiber R, Fan ZY, Pardatscher G, Roller E-M et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012; 483: 311–314. doi: 10.1038/nature10889
[19] Govorov AO, Fan ZY, Hernandez P, Slocik JM, Naik RR. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett 2010; 10: 1374–1382. doi: 10.1021/nl100010v
[20] Engheta N. Special issue on wave interactions with chiral and complex media. J Electromagn Waves Appl 1992; 6: 537–793. doi: 10.1163/156939392X01291
[21] Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013; 339: 1232009. doi: 10.1126/science.1232009
[22] Yu NF, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014; 13: 139–150. doi: 10.1038/nmat3839
[23] Banzer P, Woźniak P, Mick U, De Leon I, Boyd RW. Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection. Nat Commun 2016; 7: 13117. doi: 10.1038/ncomms13117
[24] Plum E, Fedotov VA, Zheludev NI. Optical activity in extrinsically chiral metamaterial. Appl Phys Lett 2008; 93: 191911. doi: 10.1063/1.3021082
[25] Plum E, Liu XX, Fedotov VA, Chen Y, Tsai DP et al. Metamaterials: optical activity without chirality. Phys Rev Lett 2009; 102: 113902. doi: 10.1103/PhysRevLett.102.113902
[26] Decker M, Klein MW, Wegener M, Linden S. Circular dichroism of planar chiral magnetic metamaterials. Opt Lett 2007; 32: 856–858. doi: 10.1364/OL.32.000856
[27] Bai BF, Svirko Y, Turunen J, Vallius T. Optical activity in planar chiral metamaterials: theoretical study. Phys Rev A 2007; 76: 023811. doi: 10.1103/PhysRevA.76.023811
[28] De Leon I, Horton MJ, Schulz SA, Upham J, Banzer P et al. Strong, spectrally-tunable chirality in diffractive metasurfaces. Sci Rep 2015; 5: 13034. doi: 10.1038/srep13034
[29] Papakostas A, Potts A, Bagnall DM, Prosvirnin SL, Coles HJ et al. Optical manifestations of planar chirality. Phys Rev Lett 2003; 90: 107404. doi: 10.1103/PhysRevLett.90.107404
[30] Klimov V, Zabkov IV, Pavlov AA, Shiu R-C, Chan H-C et al. Manipulation of polarization and spatial properties of light beams with chiral metafilms. Opt Express 2016; 24: 6172–6185. doi: 10.1364/OE.24.006172
[31] Fedotov VA, Mladyonov PL, Prosvirnin SL, Rogacheva AV, Chen Y et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys Rev Lett 2006; 97: 167401. doi: 10.1103/PhysRevLett.97.167401
[32] Singh R, Plum E, Menzel C, Rockstuhl C, Azad AK et al. Terahertz metamaterial with asymmetric transmission. Phys Rev B 2009; 80: 153104. doi: 10.1103/PhysRevB.80.153104
[33] Kuwata-Gonokami M, Saito N, Ino Y, Kauranen M, Jefimovs K et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys Rev Lett 2005; 95: 227401. doi: 10.1103/PhysRevLett.95.227401
[34] Zhao RK, Koschny T, Soukoulis CM. Chiral metamaterials: retrieval of the effective parameters with and without substrate. Opt Express 2010; 18: 14553–14567. doi: 10.1364/OE.18.014553
[35] Wu CH, Arju N, Kelp G, Fan JA, Dominguez J et al. Spectrally selective chiral silicon metasurfaces based on infrared fano resonances. Nat Commun 2014; 5: 3892. doi: 10.1038/ncomms4892
[36] Schäferling M. Chiral Nanophotonics. Switzerland: Springer International Publishing, 2017.
[37] Kuznetsov AI, Miroshnichenko AE, Fu YH, Zhang JB, Luk'yanchuk B. Magnetic light. Sci Rep 2012; 2: 492.
[38] Staude I, Miroshnichenko AE, Decker M, Fofang NT, Liu S et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 2013; 7: 7824–7832. doi: 10.1021/nn402736f
[39] Decker M, Staude I, Falkner M, Dominguez J, Neshev DN et al. High-efficiency dielectric Huygens' surfaces. Adv Opt Mater 2015; 3: 813–820. doi: 10.1002/adom.201400584
[40] Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 2013; 110: 197401. doi: 10.1103/PhysRevLett.110.197401
[41] Fu YH, Kuznetsov AI, Miroshnichenko AE, Yu YF, Luk'yanchuk B. Directional visible light scattering by silicon nanoparticles. Nat Commun 2013; 4: 1527. doi: 10.1038/ncomms2538
[42] Miroshnichenko AE, Kivshar YS. Fano resonances in all-dielectric oligomers. Nano Lett 2012; 12: 6459–6463. doi: 10.1021/nl303927q
[43] Krasnok AE, Miroshnichenko AE, Belov PA, Kivshar YS. All-dielectric optical nanoantennas. Opt Express 2012; 20: 20599–20604. doi: 10.1364/OE.20.020599
[44] Menzel C, Rockstuhl C, Lederer F. Advanced jones calculus for the classification of periodic metamaterials. Phys Rev A 2010; 82: 053811. doi: 10.1103/PhysRevA.82.053811
[45] Devlin RC, Khorasaninejad M, Chen WT, Oh J, Capasso F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Natl Acad Sci USA 2016; 113: 11473–11478.
[46] Wang SS, Magnusson R. Theory and applications of guided-mode resonance filters. Appl Opt 1993; 32: 2606–2613. doi: 10.1364/AO.32.002606
[47] Savinov V, Fedotov VA, Zheludev NI. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Phys Rev B 2014; 89: 205112. doi: 10.1103/PhysRevB.89.205112
[48] Radescu EE, Vaman G. Toroid moments in the momentum and angular momentum loss by a radiating arbitrary source. Phys Rev E 2002; 65: 035601. doi: 10.1103/PhysRevE.65.035601
[49] Papasimakis N, Fedotov VA, Savinov V, Raybould TA, Zheludev NI. Electromagnetic toroidal excitations in matter and free space. Nat Mater 2016; 15: 263–271. doi: 10.1038/nmat4563
[50] Miroshnichenko AE, Evlyukhin AB, Yu YF, Bakker RM, Chipouline A et al. Nonradiating anapole modes in dielectric nanoparticles. Nat Commun 2015; 6: 8069. doi: 10.1038/ncomms9069
[51] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016; 352: 1190–1194. doi: 10.1126/science.aaf6644
[52] Wan X, Shen XP, Luo Y, Cui TJ. Planar bifunctional luneburg‐fisheye lens made of an anisotropic metasurface. Laser Photonics Rev 2014; 8: 757–765. doi: 10.1002/lpor.201400023
[53] Ni XJ, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 2013; 4: 2807. doi: 10.1038/ncomms3807
[54] Devlin RC, Ambrosio A, Wintz D, Oscurato SL, Zhu AY et al. Spin-to-orbital angular momentum conversion in dielectric metasurfaces. Opt Express 2017; 25: 377–393. doi: 10.1364/OE.25.000377
[55] Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 2014; 3: e218. doi: 10.1038/lsa.2014.99
[56] Liu S, Cui TJ, Xu Q, Bao D, Du LL et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci Appl 2016; 5: e16076. doi: 10.1038/lsa.2016.76
[57] Liu S, Zhang HC, Zhang L, Yang QL, Xu Q et al. Full-state controls of terahertz waves using tensor coding metasurfaces. ACS Appl Mater Interfaces 2017; 9: 21503–21514. doi: 10.1021/acsami.7b02789