[1] Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72-84 (2019). doi: 10.1038/s41556-018-0251-8
[2] de Boer, P., Hoogenboom, J. P. & Giepmans, B. N. Correlated light and electron microscopy: ultrastructure lights up! Nat. Methods 12, 503-513 (2015). doi: 10.1038/nmeth.3400
[3] Johnsen, S. & Widder, E. A. The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering. J. Theor. Biol. 199, 181-198 (1999). doi: 10.1006/jtbi.1999.0948
[4] Cuche, E., Bevilacqua, F. & Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24, 291-293 (1999). doi: 10.1364/OL.24.000291
[5] Sung, Y. et al. Optical diffraction tomography for high resolution live cell imaging. Opt. Express 17, 266-277 (2009). doi: 10.1364/OE.17.000266
[6] Cotte, Y. et al. Marker-free phase nanoscopy. Nat. Photonics 7, 113-117 (2013). doi: 10.1038/nphoton.2012.329
[7] Kim, K. et al. Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography. Opt. Express 21, 32269-32278 (2013). doi: 10.1364/OE.21.032269
[8] Simon, B. et al. Tomographic diffractive microscopy with isotropic resolution. Optica 4, 460-463 (2017). doi: 10.1364/OPTICA.4.000460
[9] Kim, K. et al. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes. Sci. Rep. 6, 36815 (2016). doi: 10.1038/srep36815
[10] Sandoz, P. A. et al. Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux. PLoS Biol. 17, (2019).
[11] Ounkomol, C. et al. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat. Methods 15, 917-920 (2018). doi: 10.1038/s41592-018-0111-2
[12] Christiansen, E. M. et al. In silico labeling: predicting fluorescent labels in unlabeled images. Cell 173, 792-803 e19 (2018). doi: 10.1016/j.cell.2018.03.040
[13] Shin, S. et al. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device. Sci. Rep. 8, 9183 (2018). doi: 10.1038/s41598-018-27399-w
[14] Huang, X. S. et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol. 36, 451-459 (2018). doi: 10.1038/nbt.4115
[15] Fan, J. C. et al. A protocol for structured illumination microscopy with minimal reconstruction artifacts. Biophys. Rep. 5, 80-90 (2019). doi: 10.1007/s41048-019-0081-7
[16] Gerlich, D. et al. Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112, 751-764 (2003). doi: 10.1016/S0092-8674(03)00189-2
[17] Beaudouin, J. et al. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108, 83-96 (2002). doi: 10.1016/S0092-8674(01)00627-4
[18] Bohnert, M. & Schuldiner, M. Stepping outside the comfort zone of membrane contact site research. Nat. Rev. Mol. Cell Biol. 19, 483-484 (2018). doi: 10.1038/s41580-018-0022-1
[19] Wu, H. X., Carvalho, P. & Voeltz, G. K. Here, there, and everywhere: the importance of ER membrane contact sites. Science 361, eaan5835 (2018). doi: 10.1126/science.aan5835
[20] Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photonics 8, 256-263 (2014). doi: 10.1038/nphoton.2013.350
[21] Nguyen, T. H. et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8, 210 (2017). doi: 10.1038/s41467-017-00190-7
[22] Minamikawa, T. et al. Chloromethyl-X-rosamine (MitoTracker Red) photosensitises mitochondria and induces apoptosis in intact human cells. J. Cell Sci. 112, 2419-2430 (1999).
[23] Kim, K. et al. Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging. Biomed. Opt. Express 8, 5688-5697 (2017). doi: 10.1364/BOE.8.005688
[24] Schurmann, M. et al. Cell nuclei have lower refractive index and mass density than cytoplasm. J. Biophotonics 9, 1068-1076 (2016). doi: 10.1002/jbio.201500273
[25] Shimada, T. et al. Annu. Rev. Plant Biol. 69, 123-145 (2018).
[26] Li, S. C. & Kane, P. M. The yeast lysosome-like vacuole: endpoint and crossroads. Biochimica et. Biophysica Acta (BBA) - Mol. Cell Res. 1793, 650-663 (2009). doi: 10.1016/j.bbamcr.2008.08.003
[27] Cohen, S., Valm, A. M. & Lippincott-Schwartz, J. Interacting organelles. Curr. Opin. Cell Biol. 53, 84-91 (2018). doi: 10.1016/j.ceb.2018.06.003
[28] Murley, A. & Nunnari, J. The emerging network of mitochondria-organelle contacts. Mol. Cell 61, 648-653 (2016). doi: 10.1016/j.molcel.2016.01.031
[29] Prachar, J. Intimate contacts of mitochondria with nuclear envelope as a potential energy gateway for nucleo-cytoplasmic mRNA transport. Gen. Physiol. Biophysics 22, 525-534 (2003).
[30] Dzeja, P. P. et al. Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc. Natl Acad. Sci. USA 99, 10156-10161 (2002). doi: 10.1073/pnas.152259999
[31] Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358-362 (2011). doi: 10.1126/science.1207385
[32] Lewis, S. C., Uchiyama, L. F. & Nunnari, J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353, aaf5549 (2016). doi: 10.1126/science.aaf5549
[33] Gao, Q. & Goodman, J. M. The lipid droplet-a well-connected organelle. Front. Cell Dev. Biol. 3, 49 (2015).
[34] Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162-167 (2017). doi: 10.1038/nature22369
[35] Wong, Y. C., Ysselstein, D. & Krainc, D. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554, 382-386 (2018). doi: 10.1038/nature25486
[36] Wu, Z. M. et al. Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein Cell 9, 333-350 (2018). doi: 10.1007/s13238-018-0517-8
[37] Zhang, W. Q. et al. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160-1163 (2015). doi: 10.1126/science.aaa1356
[38] Bento, C. F. et al. The role of membrane-trafficking small GTPases in the regulation of autophagy. J. Cell Sci. 126, 1059-1069 (2013). doi: 10.1242/jcs.123075
[39] Kucera, A., Bakke, O. & Progida, C. The multiple roles of Rab9 in the endolysosomal system. Communicative Integr. Biol. 9, e1204498 (2016). doi: 10.1080/19420889.2016.1204498
[40] Tajika, Y. et al. Aquaporin-2 is retrieved to the apical storage compartment via early endosomes and phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 145, 4375-4383 (2004). doi: 10.1210/en.2004-0073
[41] Nixon-Abell, J. et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354, aaf3928 (2016). doi: 10.1126/science.aaf3928
[42] Kuś, A. Illumination-related errors in limited-angle optical diffraction tomography. Appl. Opt. 56, 9247-9256 (2017). doi: 10.1364/AO.56.009247
[43] Laissue, P. P. et al. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657-661 (2017). doi: 10.1038/nmeth.4344
[44] Hyman, A. A., Weber, C. A. & Julicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39-58 (2014). doi: 10.1146/annurev-cellbio-100913-013325
[45] Choy, C. H. et al. Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence. J. Cell Sci. 131, jcs213587 (2018). doi: 10.1242/jcs.213587
[46] Bissig, C. et al. PIKfyve activity regulates reformation of terminal storage lysosomes from endolysosomes. Traffic 18, 747-757 (2017). doi: 10.1111/tra.12525
[47] Nishiyama, Y. et al. Vicenistatin induces early endosome-derived vacuole formation in mammalian cells. Biosci., Biotechnol., Biochem. 80, 902-910 (2016). doi: 10.1080/09168451.2015.1132152
[48] Wada, Y. Vacuoles in mammals: a subcellular structure indispensable for early embryogenesis. Bioarchitecture 3, 13-19 (2013). doi: 10.4161/bioa.24126
[49] Johnson, C., Kannan, T. R. & Baseman, J. B. Cellular vacuoles induced by Mycoplasma pneumoniae CARDS toxin originate from Rab9-associated compartments. PLoS ONE 6, e22877 (2011). doi: 10.1371/journal.pone.0022877
[50] Tekle, E. et al. Selective field effects on intracellular vacuoles and vesicle membranes with nanosecond electric pulses. Biophys. J. 89, 274-284 (2005). doi: 10.1529/biophysj.104.054494
[51] Ikonomov, O. C., Sbrissa, D. & Shisheva, A. Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5-kinase PIKfyve. J. Biol. Chem. 276, 26141-26147 (2001). doi: 10.1074/jbc.M101722200
[52] Catrenich, C. E. & Chestnut, M. H. Character and origin of vacuoles induced in mammalian cells by the cytotoxin of Helicobacter pylori. J. Med. Microbiol. 37, 389-395 (1992). doi: 10.1099/00222615-37-6-389