[1] Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013). doi: 10.1126/science.1237861
[2] Carpenter, J., Eggleton, B. J. & Schröder, J. Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre. Nat. Photonics 9, 751–757 (2015). doi: 10.1038/nphoton.2015.188
[3] Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photonics 9, 529–535 (2015). doi: 10.1038/nphoton.2015.112
[4] Xiong, W. et al. Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling. Phys. Rev. Lett. 117, 053901 (2016). doi: 10.1103/PhysRevLett.117.053901
[5] Tzang, O. et al. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres. Nat. Photonics 12, 368–374 (2018). doi: 10.1038/s41566-018-0167-7
[6] Renninger, W. H. & Wise, F. W. Optical solitons in graded-index multimode fibres. Nat. Commun. 4, 1719 (2013). doi: 10.1038/ncomms2739
[7] Wright, L. G., Christodoulides, D. N. & Wise, F. W. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat. Photonics 9, 306–310 (2015). doi: 10.1038/nphoton.2015.61
[8] Krupa, K. et al. Spatial beam self-cleaning in multimode fibres. Nat. Photonics 11, 237–241 (2017). doi: 10.1038/nphoton.2017.32
[9] Demas, J. et al. Intermodal nonlinear mixing with Bessel beams in optical fiber. Optica 2, 14–17 (2015). doi: 10.1364/OPTICA.2.000014
[10] Wright, L. G. et al. Self-organized instability in graded-index multimode fibres. Nat. Photonics 10, 771–776 (2016). doi: 10.1038/nphoton.2016.227
[11] Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 6, 84–92 (2012). doi: 10.1038/nphoton.2011.345
[12] Wright, L. G., Christodoulides, D. N. & Wise, F. W. Spatiotemporal mode-locking in multimode fiber lasers. Science 358, 94–97 (2017). doi: 10.1126/science.aao0831
[13] Wright, L. G. et al. Mechanisms of spatiotemporal mode-locking. Nat. Phys. 16, 565–570 (2020). doi: 10.1038/s41567-020-0784-1
[14] Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007). doi: 10.1364/OL.32.002309
[15] Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010). doi: 10.1103/PhysRevLett.104.100601
[16] Yaqoob, Z. et al. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2, 110–115 (2008). doi: 10.1038/nphoton.2007.297
[17] Horstmeyer, R., Ruan, H. W. & Yang, C. H. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 9, 563–571 (2015). doi: 10.1038/nphoton.2015.140
[18] Vellekoop, I. M. Feedback-based wavefront shaping. Opt. Express 23, 12189–12206 (2015). doi: 10.1364/OE.23.012189
[19] Mosk, A. P. et al. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012). doi: 10.1038/nphoton.2012.88
[20] Jang, M. et al. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photonics 12, 84–90 (2018). doi: 10.1038/s41566-017-0078-z
[21] Papadopoulos, I. N. et al. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express 20, 10583–10590 (2012). doi: 10.1364/OE.20.010583
[22] Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 109, 203901 (2012). doi: 10.1103/PhysRevLett.109.203901
[23] Cižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012). doi: 10.1038/ncomms2024
[24] Florentin, R. et al. Shaping the light amplified in a multimode fiber. Light.: Sci. Appl. 6, e16208 (2017). doi: 10.1038/lsa.2016.208
[25] Chong, A. et al. All-normal-dispersion femtosecond fiber laser. Opt. Express 14, 10095–10100 (2006). doi: 10.1364/OE.14.010095
[26] Feng, X. H., Tam, H. Y. & Wai, P. K. A. Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation. Opt. Express 14, 8205–8210 (2006). doi: 10.1364/OE.14.008205
[27] Siegman, A. E. Defining, measuring, and optimizing laser beam quality. Proceedings of SPIE, Laser Resonators and Coherent Optics: Modeling, Technology, and Applications (SPIE, Los Angeles, 1993).
[28] Teğin, U. et al. Spatiotemporal self-similar fiber laser. Optica 6, 1412–1415 (2019). doi: 10.1364/OPTICA.6.001412
[29] Yun, S. H., Richardson, D. J. & Kim, B. Y. Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser. Opt. Lett. 23, 843–845 (1998). doi: 10.1364/OL.23.000843
[30] Ford, J. E. & Walker, J. A. Dynamic spectral power equalization using micro-opto-mechanics. IEEE Photonics Technol. Lett. 10, 1440–1442 (1998). doi: 10.1109/68.720287
[31] Tzang, O. et al. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform. Nat. Photonics 13, 788–793 (2019). doi: 10.1038/s41566-019-0503-6
[32] Shen, X. L. et al. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers. Opt. Lett. 37, 3426–3428 (2012). doi: 10.1364/OL.37.003426
[33] Andral, U. et al. Fiber laser mode locked through an evolutionary algorithm. Optica 2, 275–278 (2015). doi: 10.1364/OPTICA.2.000275
[34] Iegorov, R. et al. Direct control of mode-locking states of a fiber laser. Optica 3, 1312–1315 (2016). doi: 10.1364/OPTICA.3.001312
[35] Woodward, R. I. & Kelleher, E. J. R. Towards 'smart lasers': self-optimisation of an ultrafast pulse source using a genetic algorithm. Sci. Rep. 6, 37616 (2016). doi: 10.1038/srep37616
[36] Pu, G. Q. et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica 6, 362–369 (2019). doi: 10.1364/OPTICA.6.000362
[37] Renninger, W. H., Chong, A. & Wise, F. W. Area theorem and energy quantization for dissipative optical solitons. J. Optical Soc. Am. B 27, 1978–1982 (2010). doi: 10.1364/JOSAB.27.001978
[38] Wang, L. R. et al. Energy quantisation for dissipative solitons. Electron. Lett. 46, 436–437 (2010). doi: 10.1049/el.2010.0359
[39] Gui, L. L. et al. Soliton molecules and multisoliton states in ultrafast fibre lasers: intrinsic complexes in dissipative systems. Appl. Sci. 8, 201 (2018). doi: 10.3390/app8020201
[40] Andral, U. et al. Toward an autosetting mode-locked fiber laser cavity. J. Optical Soc. Am. B 33, 825–833 (2016). doi: 10.1364/JOSAB.33.000825
[41] Qin, H. Q. et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser. Opt. Lett. 43, 1982–1985 (2018). doi: 10.1364/OL.43.001982
[42] Liu, W. et al. Programmable controlled mode-locked fiber laser using a digital micromirror device. Opt. Lett. 42, 1923–1926 (2017). doi: 10.1364/OL.42.001923
[43] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
[44] Borhani, N. et al. Learning to see through multimode fibers. Optica. 5, 960–966 (2018). doi: 10.1364/OPTICA.5.000960
[45] Rahmani, B. et al. Multimode optical fiber transmission with a deep learning network. Light.: Sci. Appl. 7, 69 (2018). doi: 10.1038/s41377-018-0074-1
[46] Caramazza, P. et al. Transmission of natural scene images through a multimode fibre. Nat. Commun. 10, 2029 (2019). doi: 10.1038/s41467-019-10057-8
[47] Mounaix, M. et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett. 116, 253901 (2016). doi: 10.1103/PhysRevLett.116.253901
[48] Conkey, D. B. et al. Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express 20, 4840–4849 (2012). doi: 10.1364/OE.20.004840