[1] Pfefferbaum, B. & North, C. S. Mental health and the COVID-19 pandemic. N. Engl. J. Med. 383, 510–512 (2020). doi: 10.1056/NEJMp2008017
[2] Douglas, M. et al. Mitigating the wider health effects of covid-19 pandemic response. BMJ 369, m1557 (2020). doi: 10.1136/bmj.m1557
[3] Worobey, M. et al. The emergence of SARS-CoV-2 in Europe and North America. Science 370, 564–570, https://doi.org/10.1126/science.abc8169 (2020).
[4] Weissleder, R. et al. COVID-19 diagnostics in context. Sci. Transl. Med. 12, eabc1931, https://doi.org/10.1126/scitranslmed.abc1931 (2020).
[5] Ai, T. et al. Correlation of chest CT and RT-PCR Testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 296, E32–E40, https://doi.org/10.1148/radiol.2020200642 (2020).
[6] Moitra, P. et al. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 14, 7617–7627 (2020). doi: 10.1021/acsnano.0c03822
[7] Murugan, D. et al. P-FAB: a fiber-optic biosensor device for rapid detection of COVID-19. Trans. Indian Natl Acad. Eng. 5, 211–215 (2020). doi: 10.1007/s41403-020-00122-w
[8] Peng, X. et al. Promising near-infrared plasmonic biosensor employed for specific detection of SARS-CoV-2 and its spike glycoprotein. New J. Phys. 22, 103046 (2020). doi: 10.1088/1367-2630/abbe53
[9] Shiaelis, N. et al. Virus detection and identification in minutes using single-particle imaging and deep learning. medRxiv. https://doi.org/10.1101/2020.10.13.20212035 (2020).
[10] Lin, Q. Y. et al. Microfluidic immunoassays for sensitive and simultaneous detection of IgG/IgM/antigen of SARS-CoV-2 within 15 min. Anal. Chem. 92, 9454–9458 (2020). doi: 10.1021/acs.analchem.0c01635
[11] Ray, A. et al. Computational sensing of herpes simplex virus using a cost-effective on-chip microscope. Sci. Rep. 7, 4856 (2017). doi: 10.1038/s41598-017-05124-3
[12] Lindfors, K. et al. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93, 037401 (2004). doi: 10.1103/PhysRevLett.93.037401
[13] Taylor, R. W. & Sandoghdar, V. Interferometric scattering microscopy: seeing single nanoparticles and molecules via rayleigh scattering. Nano Lett. 19, 4827–4835 (2019). doi: 10.1021/acs.nanolett.9b01822
[14] Spindler, S. et al. Visualization of lipids and proteins at high spatial and temporal resolution via interferometric scattering (iSCAT) microscopy. J. Phys. D Appl. Phys. 49, 274002 (2016). doi: 10.1088/0022-3727/49/27/274002
[15] Ignatovich, F. V. & Novotny, L. Real-time and background-free detection of nanoscale particles. Phys. Rev. Lett. 96, 013901 (2006). doi: 10.1103/PhysRevLett.96.013901
[16] Kukura, P. et al. High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6, 923–927 (2009). doi: 10.1038/nmeth.1395
[17] Daaboul, G. et al. High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification. Nano Lett. 10, 4727–4731 (2010). doi: 10.1021/nl103210p
[18] Goldfain, A. M. et al. Dynamic measurements of the position, orientation, and DNA content of individual unlabeled bacteriophages. J. Phys. Chem. B 120, 6130–6138 (2016). doi: 10.1021/acs.jpcb.6b02153
[19] Popescu, G. Quantitative Phase Imaging of Cells and Tissues (McGraw Hill Professional, 2011).
[20] Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018). doi: 10.1038/s41566-018-0253-x
[21] Ban, S. et al. Optical properties of acute kidney injury measured by quantitative phase imaging. Biomed. Opt. Express 9, 921–932 (2018). doi: 10.1364/BOE.9.000921
[22] Bertels, J. et al. Zinc's effect on the differentiation of porcine adipose-derived stem cells into osteoblasts. J. Regen. Med. 8, 2 (2019). http://www.researchgate.net/publication/342350142_Zinc's_Effect_on_the_Differentiation_of_Porcine_Adipose-derived_Stem_Cells_into_Osteoblasts/download
[23] Fanous, M. et al. Quantitative phase imaging of stromal prognostic markers in pancreatic ductal adenocarcinoma. Biomed. Opt. Express 11, 1354–1364 (2020). doi: 10.1364/BOE.383242
[24] Hu, C. et al. Imaging collagen properties in the uterosacral ligaments of women with pelvic organ prolapse using spatial light interference microscopy (SLIM). Front. Phys. 7, 72 (2019). doi: 10.3389/fphy.2019.00072
[25] Li, Y. et al. Quantitative phase imaging reveals matrix stiffness-dependent growth and migration of cancer cells. Sci. Rep. 9, 248 (2019). doi: 10.1038/s41598-018-36551-5
[26] Liu, L. et al. Topography and refractometry of sperm cells using spatial light interference microscopy. J. Biomed. Opt. 23, 025003 (2018). http://light.ece.illinois.edu/wp-content/uploads/2018/02/025003.pdf
[27] Rubessa, M. et al. SLIM microscopy allows for visualization of DNA-containing liposomes designed for sperm-mediated gene transfer in cattle. Mol. Biol. Rep. 46, 695–703 (2019). doi: 10.1007/s11033-018-4525-9
[28] Merola, F. et al. Tomographic flow cytometry by digital holography. Light Sci. Appl. 6, e16241, https://doi.org/10.1038/lsa.2016.241 (2017).
[29] Lee, M. et al. Label-free optical quantification of structural alterations in Alzheimer's disease. Sci. Rep. 6, 31034 (2016). doi: 10.1038/srep31034
[30] Eldridge, W. J. et al. Optical phase measurements of disorder strength link microstructure to cell stiffness. Biophysical J. 112, 692–702 (2017). doi: 10.1016/j.bpj.2016.12.016
[31] Nygate, Y. N. et al. Holographic virtual staining of individual biological cells. Proc. Natl Acad. Sci. USA 117, 9223–9231, https://doi.org/10.1073/pnas.1919569117 (2020).
[32] Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photonics 8, 256–263, https://doi.org/10.1038/nphoton.2013.350 (2014).
[33] Wang, Z. et al. Spatial light interference microscopy (SLIM). Opt. Express 19, 1016–1026 (2011). doi: 10.1364/OE.19.001016
[34] Chen, X. et al. Wolf phase tomography (WPT) of transparent structures using partially coherent illumination. Light Sci. Appl. 9, 142 (2020). doi: 10.1038/s41377-020-00379-4
[35] Dey, N. et al. Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc. Res. Tech. 69, 260–266 (2006). doi: 10.1002/jemt.20294
[36] Sage, D. et al. DeconvolutionLab2: an open-source software for deconvolution microscopy. Methods 115, 28–41 (2017). doi: 10.1016/j.ymeth.2016.12.015
[37] Goldsmith, C. S. & Tamin, A. Electron microscopic image of a negatively stained particle of SARS-CoV-2, causative agent of COVID-19 (2020). https://phil.cdc.gov/Details.aspx?pid=23640.
[38] Prasad, S. et al. Transmission electron microscopy imaging of SARS-CoV-2. Indian J. Med. Res. 151, 241–243 (2020). http://www.researchgate.net/publication/339950649_Transmission_electron_microscopy_imaging_of_SARS-CoV-2
[39] Centers for Disease Control and Prevention. Images of the H1N1 Influenza Virus (CDC, 2010). https://www.cdc.gov/h1n1flu/images.htm.
[40] Ostapchuk, P. et al. The adenovirus major core protein VII is dispensable for virion assembly but is essential for lytic infection. PLoS Pathog. 13, e1006455 (2017). doi: 10.1371/journal.ppat.1006455
[41] Boigard, H. et al. Zika virus-like particle (VLP) based vaccine. PLoS Neglected Tropical Dis. 11, e0005608 (2017). doi: 10.1371/journal.pntd.0005608
[42] Sherman, K. E. et al. Zika virus replication and cytopathic effects in liver cells. PLoS ONE 14, e0214016 (2019). doi: 10.1371/journal.pone.0214016
[43] Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. 234–241. (Munich, Germany: Springer, 2015).
[44] Selvaraju, R. R. et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. Proceedings of 2017 IEEE International Conference on Computer Vision. 618–626 (Venice, Italy: IEEE, 2017).
[45] Vinogradova, K., Dibrov, A. & Myers, G: Towards Interpretable Semantic Segmentation via Gradient-Weighted Class Activation Mapping (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 34, 13943–13944. (New York, USA, 2020).
[46] Guzman, M. I. An overview of the effect of bioaerosol size in coronavirus disease 2019 transmission. Int. J. Health Plan. Manag. 36, 257–266 (2021). doi: 10.1002/hpm.3095
[47] Bake, B. et al. Exhaled particles and small airways. Respiratory Res. 20, 8 (2019). doi: 10.1186/s12931-019-0970-9
[48] Li, X. G. et al. Detecting SARS-CoV-2 in the breath of COVID-19 patients. Front. Med. 8, 604392 (2021). doi: 10.3389/fmed.2021.604392
[49] Kingma, D. P. & Ba, J. L. Adam: a method for stochastic optimization. Preprint at arXiv: 1412.6980 (2014).