[1] Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458-463 (2013). doi: 10.1038/nature12314
[2] Bandodkar, A. J. & Wang, J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363-371 (2014). doi: 10.1016/j.tibtech.2014.04.005
[3] Son, D. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397-404 (2014). doi: 10.1038/nnano.2014.38
[4] Wang, X. W. et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 26, 1336-1342 (2014). doi: 10.1002/adma.201304248
[5] Zeng, W. et al. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26, 5310-5336 (2014). doi: 10.1002/adma.201400633
[6] Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015). doi: 10.1038/ncomms8461
[7] Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467-475 (2015). doi: 10.1038/nature14543
[8] Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509-514 (2016). doi: 10.1038/nature16521
[9] Lee, S. et al. Organic flash memory on various flexible substrates for foldable and disposable electronics. Nat. Commun. 8, 725 (2017). doi: 10.1038/s41467-017-00805-z
[10] Wang, S. H. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83-88 (2018). doi: 10.1038/nature25494
[11] Kim, J. et al. Ultrathin quantum dot display integrated with wearable electronics. Adv. Mater. 29, 1700217 (2017). doi: 10.1002/adma.201700217
[12] Lee, H. et al. Toward all-day wearable health monitoring: an ultralow-power, reflective organic pulse oximetry sensing patch. Sci. Adv. 4, eaas9530 (2018). doi: 10.1126/sciadv.aas9530
[13] Xu, H. H. et al. Recent advances in biointegrated optoelectronic devices. Adv. Mater. 30, 1800156 (2018). doi: 10.1002/adma.201800156
[14] Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016). doi: 10.1126/sciadv.1501856
[15] Yin, D. et al. Two-dimensional stretchable organic light-emitting devices with high efficiency. ACS Appl. Mater. Interfaces 8, 31166-31171 (2016). doi: 10.1021/acsami.6b10328
[16] Yin, D. et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat. Commun. 7, 11573 (2016). doi: 10.1038/ncomms11573
[17] Shi, X. et al. A self-healing and stretchable light-emitting device. J. Mater. Chem. C. 6, 12774-12780 (2018). doi: 10.1039/C8TC02828A
[18] Kaltenbrunner, M. et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012). doi: 10.1038/ncomms1772
[19] Lee, Y. H. et al. Wearable textile battery rechargeable by solar energy. Nano Lett. 13, 5753-5761 (2013). doi: 10.1021/nl403860k
[20] Jinno, H. et al. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat. Energy 2, 780-785 (2017). doi: 10.1038/s41560-017-0001-3
[21] Jeon, Y. et al. A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects. Adv. Mater. Technol. 3, 1700391 (2018). doi: 10.1002/admt.201700391
[22] Choi, M. K. et al. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flexible Electr. 2, 10 (2018). doi: 10.1038/s41528-018-0023-3
[23] White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7, 811-816 (2013). doi: 10.1038/nphoton.2013.188
[24] Min et al. An OLED using cellulose paper as a flexible substrate. Mol. Cryst. Liq. Cryst. 563, 159-165 (2012). doi: 10.1080/15421406.2012.689153
[25] Ummartyotin, S. et al. Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind. Crops Products 35, 92-97 (2012). doi: 10.1016/j.indcrop.2011.06.025
[26] Jin, J. et al. Chitin nanofiber transparent paper for flexible green electronics. Adv. Mater. 28, 5169-5175 (2016). doi: 10.1002/adma.201600336
[27] Choi, S. et al. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci. Rep. 7, 6424 (2017). doi: 10.1038/s41598-017-06733-8
[28] Kim, W. et al. Reliable actual fabric-based organic light-emitting diodes: toward a wearable display. Adv. Electron. Mater. 2, 1600220 (2016). doi: 10.1002/aelm.201600220
[29] Kim, W. et al. Soft fabric-based flexible organic light-emitting diodes. Org. Electron. 14, 3007-3013 (2013). doi: 10.1016/j.orgel.2013.09.001
[30] Ko, K. J. et al. High-performance, color-tunable fiber shaped organic light-emitting diodes. Nanoscale 10, 16184-16192 (2018). doi: 10.1039/C8NR05120H
[31] Kwon, S. et al. Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process. Nano Lett. 18, 347-356 (2018). doi: 10.1021/acs.nanolett.7b04204
[32] Zhang, Z. T. et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat. Photonics 9, 233-238 (2015). doi: 10.1038/nphoton.2015.37
[33] Yang, X. Y. et al. Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers. ACS Nano 8, 8224-8231 (2014). doi: 10.1021/nn502588k
[34] Yun, S. O. et al. Sticker-type Alq3-Based OLEDs based on printable ultrathin substrates in periodically anchored and suspended configurations. Adv. Mater. 25, 5626-5631 (2013). doi: 10.1002/adma201302503
[35] Jeon, Y. et al. 22-4: wearable photobiomodulation patch using attachable flexible organic light-emitting diodes for human keratinocyte cells. SID Symp. Dig. Tech. Pap. 49, 279-282 (2018).
[36] Attili, S. K. et al. An open pilot study of ambulatory photodynamic therapy using a wearable low-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer. Br. J. Dermatol. 161, 170-173 (2009). doi: 10.1111/j.1365-2133.2009.09096.x
[37] Guo, H. W. et al. Low-fluence rate, long duration photodynamic therapy in glioma mouse model using organic light emitting diode (OLED). Photodiagnosis Photodyn. Ther. 12, 504-510 (2015). doi: 10.1016/j.pdpdt.2015.04.007
[38] Wu, X. J. et al. Organic light emitting diode improves diabetic cutaneous wound healing in rats. Wound Repair Regeneration 23, 104-114 (2015). doi: 10.1111/wrr.12258
[39] Chung, H. et al. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 40, 516-533 (2012). doi: 10.1007/s10439-011-0454-7
[40] Whelan, H. T. et al. Effect of NASA light-emitting diode irradiation on wound healing. J. Clin. Laser Med. Surg. 19, 305-314 (2001). doi: 10.1089/104454701753342758
[41] Chen, H. et al. Quantum dot light emitting devices for photomedical applications. J. Soc. Inf. Disp. 25, 177-184 (2017). doi: 10.1002/jsid.543
[42] Chen, H. et al. Flexible quantum dot light-emitting devices for targeted photomedical applications. J. Soc. Inf. Disp. 26, 296-303 (2018). doi: 10.1002/jsid.650
[43] Kwon, J. H. et al. Functional Design of highly robust and flexible thin-film encapsulation composed of quasi-perfect sublayers for transparent, flexible displays. ACS Appl. Mater. Interfaces 9, 43983-43992 (2017). doi: 10.1021/acsami.7b14040
[44] Kwon, S. et al. Recent progress of fiber shaped lighting devices for smart display applications-a fibertronic perspective. Adv. Mater. https://doi.org/10.1002/adma.201903488 (2019).
[45] Seo, H. K. et al. Laminated graphene films for flexible transparent thin film encapsulation. ACS Appl. Mater. Interfaces 8, 14725-14731 (2016). doi: 10.1021/acsami.6b01639
[46] Park, M. H. et al. Flexible lamination encapsulation. Adv. Mater. 27, 4308-4314 (2015). doi: 10.1002/adma.201501856
[47] Jeong, E. G. et al. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs. Nanoscale 9, 6370-6379 (2017). doi: 10.1039/C7NR01166K
[48] Jeong, E. G. et al. Textile-based washable polymer solar cells for optoelectronic modules: toward self-powered smart clothing. Energy Environ. Sci. 12, 1878-1889 (2019). doi: 10.1039/C8EE03271H
[49] Rückerl, A. et al. Characterization and prevention of humidity related degradation of atomic layer deposited Al2O3. J. Appl. Phys. 121, 025306 (2017). doi: 10.1063/1.4973583
[50] ASTM International. ASTM D1388 Standard test method for stiffness of fabrics. (West Conshohocken, PA, USA: ASTM International, 2014).
[51] De Bilbao, E. et al. Experimental study of bending behaviour of reinforcements. Exp. Mech. 50, 333-351 (2010). doi: 10.1007/s11340-009-9234-9
[52] ISO. 10993-5. Biological evaluation of medical devices-part 5: tests for in vitro cytotoxicity. (International Organization for Standardization, Geneva, Switzerland, 2009).
[53] Brohem, C. A. et al. Artificial skin in perspective: concepts and applications. Pigment Cell Melanoma Res. 24, 35-50 (2011). doi: 10.1111/j.1755-148X.2010.00786.x
[54] Choi, H. R. et al. Suppression of miR135b increases the proliferative potential of normal human keratinocytes. J. Invest. Dermatol. 134, 1161-1164 (2014). doi: 10.1038/jid.2013.427
[55] Kim, S. W. et al. Fibroblasts and ascorbate regulate epidermalization in reconstructed human epidermis. J. Dermatol. Sci. 30, 215-223 (2002). doi: 10.1016/S0923-1811(02)00108-1
[56] Rittié, L. Cellular mechanisms of skin repair in humans and other mammals. J. Cell Commun. Signal. 10, 103-120 (2016). doi: 10.1007/s12079-016-0330-1
[57] Dabiri, G., Damstetter, E. & Phillips, T. Choosing a wound dressing based on common wound characteristics. Adv. Wound Care 5, 32-41 (2016). doi: 10.1089/wound.2014.0586
[58] Masson-Meyers, D. S., Bumah, V. V. & Enwemeka, C. S. Blue light does not impair wound healing in vitro. J. Photochem. Photobiol. B Biol. 160, 53-60 (2016). doi: 10.1016/j.jphotobiol.2016.04.007
[59] Wang, Y. G. et al. Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells. Sci. Rep. 7, 7781 (2017). doi: 10.1038/s41598-017-07525-w
[60] Simões, T. M. S. et al. Photobiomodulation of red and green lights in the repair process of third-degree skin burns. Lasers Med. Sci. https://doi.org/10.1007/s10103-019-02776-7 (2019).
[61] Yun, S. H. & Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 0008 (2017). doi: 10.1038/s41551-016-0008
[62] Rheinwald, J. & Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell J. Invest Dermatol. 6, 331-342 (1975). http://ci.nii.ac.jp/naid/10017215648
[63] Choi, H. R. et al. Phlorizin, an active ingredient of Eleutherococcus senticosus, increases proliferative potential of keratinocytes with inhibition of MiR135b and increased expression of type Ⅳ collagen. Oxid. Med. Cell. Longev. 2016, 3859721 (2016).