[1] Lauga, E. Bacterial hydrodynamics. Annual Review of Fluid Mechanics 48, 105-130 (2016). doi: 10.1146/annurev-fluid-122414-034606
[2] Malo, A. F. et al. Sperm design and sperm function. Biology Letters 2, 246-249 (2006). doi: 10.1098/rsbl.2006.0449
[3] Spagnolie, S. E. & Lauga, E. Comparative hydrodynamics of bacterial polymorphism. Physical Review Letters 106, 058103 (2011).
[4] Medina-Sánchez, M. et al. Swimming microrobots: soft, reconfigurable, and smart. Advanced Functional Materials 28, 1707228 (2018). doi: 10.1002/adfm.201707228
[5] Yang, T. et al. Reconfigurable microbots folded from simple colloidal chains. Proceedings of the National Academy of Sciences of the United States of America 117, 18186-18193 (2020).
[6] Breger, J. C. et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Applied Materials & Interfaces 7, 3398-3405 (2015).
[7] Jin, Q. R. et al. Untethered single cell grippers for active biopsy. Nano Letters 20, 5383-5390 (2020). doi: 10.1021/acs.nanolett.0c01729
[8] Zhang, J. C. et al. Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines. Advanced Materials 33, 2006191 (2021). doi: 10.1002/adma.202006191
[9] Zeng, H. et al. Light‐fueled microscopic walkers. Advanced Materials 27, 3883-3887 (2015). doi: 10.1002/adma.201501446
[10] Palagi, S. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nature Materials 15, 647-653 (2016). doi: 10.1038/nmat4569
[11] Rogóż, M. et al. Light‐driven soft robot mimics caterpillar locomotion in natural scale. Advanced Optical Materials 4, 1689-1694 (2016). doi: 10.1002/adom.201600503
[12] Ghosh, A. et al. Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo. Science Advances 6, eabb4133 (2020). doi: 10.1126/sciadv.abb4133
[13] Hu, W. Q. et al. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81-85 (2018). doi: 10.1038/nature25443
[14] Kim, Y. et al. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274-279 (2018). doi: 10.1038/s41586-018-0185-0
[15] Huang, G. Y. et al. Magnetically actuated droplet manipulation and its potential biomedical applications. ACS Applied Materials & Interfaces 9, 1155-1166 (2017).
[16] Dong, Y. et al. Magnetic helical micro-/nanomachines: recent progress and perspective. Matter 5, 77-109 (2022). doi: 10.1016/j.matt.2021.10.010
[17] Peyer, K. E. , Zhang, L. & Nelson, B. J. . Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5, 1259-1272 (2013).
[18] Huang, H. W. et al. Soft micromachines with programmable motility and morphology. Nature Communications 7, 12263 (2016). doi: 10.1038/ncomms12263
[19] Yoshida, K. & Onoe, H. Soft spiral-shaped microswimmers for autonomous swimming control by detecting surrounding environments. Advanced Intelligent Systems 2, 2000095 (2020).
[20] Badami, A. S. et al. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly (lactic acid) substrates. Biomaterials 27, 596-606 (2006). doi: 10.1016/j.biomaterials.2005.05.084
[21] Liu, Z. W. , Chen, W. & Papadopoulos, K. D. Bacterial motility, collisions, and aggregation in a 3‐μm‐diameter capillary. Biotechnology and Bioengineering 53, 238-241 (1997).
[22] Tan, Y. L. et al. Bioinspired multiscale wrinkling patterns on curved substrates: an overview. Nano-Micro Letters 12, 101 (2020). doi: 10.1007/s40820-020-00436-y
[23] Zhang, L. et al. Artificial bacterial flagella: fabrication and magnetic control. Applied Physics Letter 94, 064107 (2009). doi: 10.1063/1.3079655
[24] Zhang, L. et al. Characterizing the swimming properties of artificial bacterial flagella. Nano Letters 9, 3663-3667 (2009). doi: 10.1021/nl901869j
[25] Ghosh, A. & Fischer, P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Letters 9, 2243-2245 (2009).
[26] Gao, W. et al. Bioinspired helical microswimmers based on vascular plants. Nano Letters 14, 305-310 (2014). doi: 10.1021/nl404044d
[27] Kawata, S. et al. Finer features for functional microdevices. Nature 412, 697-698 (2001). doi: 10.1038/35089130
[28] Zhang, Y. L. et al. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5, 435-448 (2010). doi: 10.1016/j.nantod.2010.08.007
[29] Ceylan, H. et al. 3D printed personalized magnetic micromachines from patient blood–derived biomaterials. Science Advances 7, eabh0273 (2021).
[30] Bozuyuk, U. et al. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano 12, 9617-9625 (2018). doi: 10.1021/acsnano.8b05997
[31] Ceylan, H. et al. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 13, 3353-3362 (2019).
[32] Lee, Y. W. et al. 3D-printed multi-stimuli-responsive mobile micromachines. ACS Applied Materials & Interfaces 13, 12759-12766 (2021).
[33] Tottori, S. et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Advanced Materials 24, 811-816 (2012). doi: 10.1002/adma.201103818
[34] Wang, X. P. et al. 3D printed enzymatically biodegradable soft helical microswimmers. Advanced Functional Materials 28, 1804107 (2018).
[35] Peters, C. et al. Degradable magnetic composites for minimally invasive interventions: device fabrication, targeted drug delivery, and cytotoxicity tests. Advanced Materials 28, 533-538 (2016). doi: 10.1002/adma.201503112
[36] Qiu, F. M. et al. Noncytotoxic artificial bacterial flagella fabricated from biocompatible ORMOCOMP and iron coating. Journal of Materials Chemistry B 2, 357-362 (2014). doi: 10.1039/C3TB20840K
[37] Jia, R. et al. Detoxification of deoxynivalenol by Bacillus subtilis ASAG 216 and characterization the degradation process. European Food Research and Technology 247, 67-76 (2021). doi: 10.1007/s00217-020-03607-8
[38] Machen, T. E. & Paradiso, A. M. Regulation of intracellular pH in the stomach. Annual Review of Physiology 49, 19-33 (1987).
[39] Xin, C. et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano 15, 18048-18059 (2021). doi: 10.1021/acsnano.1c06651
[40] Xu, B. et al. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Scientific Reports 6, 19989 (2016). doi: 10.1038/srep19989
[41] Wang, Z. et al. High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser bessel-beam-assisted chemical etching. Optics Letters 43, 98-101 (2018). doi: 10.1364/OL.43.000098
[42] Cai, Z. et al. Dynamic airy imaging through high-efficiency broadband phase microelements by femtosecond laser direct writing. Photonics Research 8, 875-883 (2020). doi: 10.1364/PRJ.387495
[43] Yang, L. et al. Targeted single‐cell therapeutics with magnetic tubular micromotor by one‐step exposure of structured femtosecond optical vortices. Advanced Functional Materials 29, 1905745 (2019). doi: 10.1002/adfm.201905745
[44] Li, R. et al. Stimuli-responsive actuator fabricated by dynamic asymmetric femtosecond bessel beam for in situ particle and cell manipulation. ACS Nano 14, 5233-5242 (2020). doi: 10.1021/acsnano.0c00381
[45] Ji, S. Y. et al. High-aspect-ratio microtubes with variable diameter and uniform wall thickness by compressing Bessel hologram phase depth. Optics Letters 43, 3514-3517 (2018). doi: 10.1364/OL.43.003514
[46] Li, X. et al. Reversible bidirectional bending of hydrogel-based bilayer actuators. Journal of Materials Chemistry B 5, 2804-2812 (2017). doi: 10.1039/C7TB00426E
[47] Ali, S. K. & Saleh, A. M. Spirulina-an overview. International Journal of Pharmacy and Pharmaceutical Sciences 4, 9-15 (2012).
[48] Nataro, J. P. & Kaper, J. B. Diarrheagenic Escherichia coli. Clinical Microbiology Reviews 11, 142-201 (1998).
[49] Pitnick, S. , Hosken, D. J. & Birkhead, T. R. Sperm morphological diversity. in Sperm Biology (eds Birkhead, T. R. , Hosken, D. J. & Pitnick, S. ) (Amsterdam: Elsevier, 2009), 69-149.
[50] Matthews, K. R. The developmental cell biology of Trypanosoma brucei. Journal of Cell Science 118, 283-290 (2005). doi: 10.1242/jcs.01649
[51] Morozov, K. I. & Leshansky, A. M. Dynamics and polarization of superparamagnetic chiral nanomotors in a rotating magnetic field. Nanoscale 6, 12142-12150 (2014).
[52] Leshansky, A. M. , Morozov, K. I. & Rubinstein, B. Y. Shape-controlled anisotropy of superparamagnetic micro-/nanohelices. Nanoscale 8, 14127-14138 (2016).
[53] Morozov, K. I. et al. Dynamics of arbitrary shaped propellers driven by a rotating magnetic field. Physical Review Fluids 2, 044202 (2017). doi: 10.1103/PhysRevFluids.2.044202
[54] Zhang, L. et al. Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano 4, 6228-6234 (2010). doi: 10.1021/nn101861n
[55] De Mestre, N. J. & Russel, W. B. Low-reynolds-number translation of a slender cylinder near a plane wall. Journal of Engineering Mathematics 9, 81-91 (1975).
[56] Morozov, K. I. , Alexander, M. & Leshansky, A. M. The chiral magnetic nanomotors. Nanoscale 6, 1580-1588 (2014).
[57] Alcântara, C. C. J. et al. 3D fabrication of fully iron magnetic microrobots. Small 15, 1805006 (2019).
[58] Zhu, J. et al. pH-Controlled delivery of doxorubicin to cancer cells, based on small mesoporous carbon nanospheres. Small 8, 2715-2720 (2012).
[59] Zhang, D. et al. Tumor microenvironment activable self-assembled DNA hybrids for pH and redox dual-responsive chemotherapy/PDT treatment of hepatocellular carcinoma. Advanced Science 4, 1600460 (2017). doi: 10.1002/advs.201600460
[60] Wang, Y. G. et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nature Materials 13, 204-212 (2014). doi: 10.1038/nmat3819
[61] Webb, B. A. et al. Dysregulated pH: a perfect storm for cancer progression. Nature Reviews Cancer 11, 671-677 (2011). doi: 10.1038/nrc3110