[1] |
H an, M. L., et al. Ultra-short-pulse lasers—materials—applications. Eng. Proc. 11, 44 (2021). |
[2] |
Mourou, G. A., Tajima, T. & Bulanov, S. V. Optics in the relativistic regime. Rev. Modern Phys. 78, 309-371 (2006). doi: 10.1103/RevModPhys.78.309 |
[3] |
Utéza, O., et al. Surface ablation of dielectrics with sub-10 fs to 300 fs laser pulses: Crater depth and diameter, and efficiency as a function of laser intensity. Journal of Laser Micro/Nanoengineering 5, 238-241 (2010). doi: 10.2961/jlmn.2010.03.0011 |
[4] |
Genieys, T., Sentis, M. & Utéza, O. Measurement of ultrashort laser ablation of four metals (Al, Cu, Ni, W) in the single-pulse regime. Advanced Optical Technologies 9, 131-143 (2020). doi: 10.1515/aot-2019-0064 |
[5] |
H ur, M. S., et al. Laser pulse compression by a density gradient plasma for exawatt to zettawatt lasers. Nature Photonics 17, 1074-1079 (2023). doi: 10.1038/s41566-023-01321-x |
[6] |
Gibbon, P. Short Pulse Laser Interactions with Matter: an Introduction (London: Imperial College Press, 2005). |
[7] |
G uo, L., et al. Scaling of the low-energy structure in above-threshold ionization in the tunneling regime: Theory and experiment. Phys. Rev. Lett. 110, 013001 (2013). doi: 10.1103/PhysRevLett.110.013001 |
[8] |
Kuznetsov, K. A., et al. Terahertz photoconductive antenna based on a topological insulator nanofilm. Applied Sciences 11, 5580 (2021). doi: 10.3390/app11125580 |
[9] |
Huang, H. H., et al. Dual THz wave and X-ray generation from a water film under femtosecond laser excitation. Nanomaterials 8, 523 (2018). doi: 10.3390/nano8070523 |
[10] |
Greffet, J.-J., et al. Coherent emission of light by thermal sources. Nature 416, 61-64 (2002). doi: 10.1038/416061a |
[11] |
Hirori, H., et al. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters 98, 091106 (2011). doi: 10.1063/1.3560062 |
[12] |
L ee, Y.-S., et al. Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate. Applied Physics Letters 76, 2505-2507 (2000). doi: 10.1063/1.126390 |
[13] |
Y eh, K.-L., et al. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters 90, 171121 (2007). doi: 10.1063/1.2734374 |
[14] |
Se ll, A., Leitenstorfer, A. & Huber, R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 mv/cm. Opt. Lett. 33, 2767-2769 (2008). doi: 10.1364/OL.33.002767 |
[15] |
Seifert, T., et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photonics 10, 483-488 (2016). doi: 10.1038/nphoton.2016.91 |
[16] |
Schiffrin, A., et al. Optical-field-induced current in dielectrics. Nature 493, 70-74 (2013). doi: 10.1038/nature11567 |
[17] |
Sprangle, P., et al. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E 69, 066415 (2004). doi: 10.1103/PhysRevE.69.066415 |
[18] |
Roskos, H. G., et al. Broadband thz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications. Laser & Photonics Reviews 1, 349-368 (2007). |
[19] |
Kasparian, J. & Wolf, J.-P. Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express 16, 466-493 (2008). doi: 10.1364/OE.16.000466 |
[20] |
Andreeva, V. A., et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma. Phys. Rev. Lett. 116, 063902 (2016). doi: 10.1103/PhysRevLett.116.063902 |
[21] |
Mitryukovskiy, S. I., et al. Coherent interaction between the terahertz radiation emitted by filaments in air. Laser Physics 24, 094009 (2014). doi: 10.1088/1054-660X/24/9/094009 |
[22] |
Leemans, W. P., et al. Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91, 074802 (2003). doi: 10.1103/PhysRevLett.91.074802 |
[23] |
Gupta, D. N., et al. Propagation of intense laser pulses in plasma with a prepared phase-space distribution. Scientific Reports 12, 20368 (2022). doi: 10.1038/s41598-022-24664-x |
[24] |
Koulouklidis, A. D., et al. Observation of extremely efficient terahertz generation from mid-infrared twocolor laser filaments. Nature Commun. 11, 292 (2020). doi: 10.1038/s41467-019-14206-x |
[25] |
Fülöp, J. A., Tzortzakis, S. & Kampfrath, T. Laser-driven strong-field terahertz sources. Advanced Optical Materials 8, 1900681 (2020). doi: 10.1002/adom.201900681 |
[26] |
Reimann, K. Table-top sources of ultrashort thz pulses. Reports on Progress in Physics 70, 1597 (2007). doi: 10.1088/0034-4885/70/10/R02 |
[27] |
Huang, H. H., Nagashima, T. & Hatanaka, K. Shockwave-based thz emission in air. Opt. Express 31, 5650-5661 (2023). doi: 10.1364/OE.478610 |
[28] |
Hayasaki, Y., et al. Variable holographic femtosecond laser processing by use of a spatial light modulator. Applied Physics Letters 87, 031101 (2005). doi: 10.1063/1.1992668 |
[29] |
Zel’dovich, Y. B. & Raizer, Y. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. (Mineola: Dover Publications, 2002). |
[30] |
Huang, H. H., et al. Spatio-temporal control of THz emission. Communications Physics 5, 134 (2022). doi: 10.1038/s42005-022-00914-2 |
[31] |
Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191-1194 (1986). |
[32] |
M ur, V. D., Popruzhenko, S. V. & Popov, V. S. Energy and momentum spectra of photoelectrons under conditions of ionization by strong laser radiation (the case of elliptic polarization). J. Exp. Theor. Phys. 92, 777-788 (2001). doi: 10.1134/1.1378169 |
[33] |
Huba, J. NRL Plasma Formulary. https://apps.dtic.mil/sti/citations/tr/ADA469421 (Naval Research Laboratory, 2007). |
[34] |
Brantov, A. V., et al. Enhanced inverse Bremsstrahlung heating rates in a strong laser field. Phys. Plasmas 10, 3385-3396 (2003). doi: 10.1063/1.1586917 |
[35] |
Puckett, A. E. & Stewart, H. J. The thickness of a shock wave in air. Quarterly Appl. Math. 7, 457-463 (1950). doi: 10.1090/qam/33711 |
[36] |
Koritsoglou, O., et al. Characteristics of femtosecond laser-induced shockwaves in air. Optics Express 30, 37407-37415 (2022). doi: 10.1364/OE.468224 |
[37] |
Dember, H. Über eine photoelektronische kraft in kupferoxydul-kristallen. Z. Phys 32, 554 (1931). |
[38] |
Johnston, M. B., et al. Simulation of terahertz generation at semiconductor surfaces. Phys. Rev. B 65, 165301 (2002). doi: 10.1103/PhysRevB.65.165301 |
[39] |
Biermann, L. Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum. Zeitschrift für Naturforschung A 5, 65-71 (1950). |
[40] |
Stamper, J. A. Review on spontaneous magnetic fields in laser-produced plasmas: Phenomena and measurements. Laser Part. Beams 9, 841-862 (1991). doi: 10.1017/S0263034600006595 |
[41] |
O’Sullivan, G., et al. Spectroscopy of highly charged ions and its relevance to EUV and soft x-ray source development. J. Physics B: Atomic,Molecular Optical Physics 48, 144025 (2015). doi: 10.1088/0953-4075/48/14/144025 |
[42] |
Uryupina, D. S., et al. Femtosecond laser-plasma interaction with prepulse-generated liquid metal microjets. Physics of Plasmas 19, 013104 (2012). doi: 10.1063/1.3675871 |
[43] |
Huang, H. H., et al. Mechanism of single-cycle THz pulse generation and X-ray emission: water-flow irradiated by two ultra-short laser pulses. Nanomaterials 13, 2505 (2023). doi: 10.3390/nano13182505 |
[44] |
Düsterer, S., et al. Optimization of EUV radiation yield from laser-produced plasma. Appl. Phys. B 73, 693-698 (2001). |
[45] |
Kuzmenko, A. V. Weighting iterative Fourier transform algorithm of the kinoform synthesis. Opt. Lett. 33, 1147-1149 (2008). doi: 10.1364/OL.33.001147 |
[46] |
Zhang, H., et al. Three-dimensional holographic parallel focusing with feedback control for femtosecond laser processing. Optics and Lasers in Engineering 151, 106884 (2022). doi: 10.1016/j.optlaseng.2021.106884 |
[47] |
Huang, H. H., et al. Giant enhancement of thz wave emission under double-pulse excitation of thin water flow. Applied Sciences 10, 2031 (2020). doi: 10.3390/app10062031 |
[48] |
Y eh, P. A new optical model for wire grid polarizers. Optics Communications 26, 289-292 (1979). |
[49] |
Miyamaru, F., et al. Large polarization change in twodimensional metallic photonic crystals in subterahertz region. Applied Physics Letters 82, 2568-2570 (2003). doi: 10.1063/1.1567458 |
[50] |
Kanda, N., Konishi, K. & Kuwata-Gonokami, M. Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns. Opt. Express 15, 11117-11125 (2007). doi: 10.1364/OE.15.011117 |