[1] Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309-2311 (2007). doi: 10.1364/OL.32.002309
[2] Yaqoob, Z. et al. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2, 110-115 (2008). doi: 10.1038/nphoton.2007.297
[3] Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nat. Photonics 4, 388-394 (2010). doi: 10.1038/nphoton.2010.85
[4] Conkey, D. B., Caravaca-Aguirre, A. M. & Piestun, R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20, 1733-1740 (2012). doi: 10.1364/OE.20.001733
[5] Papadopoulos, I. N. et al. Scattering compensation by focus scanning holographic aberration probing (F-Sharp). Nat. Photonics 11, 116-123 (2017). doi: 10.1038/nphoton.2016.252
[6] Yoon, S. et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2, 141-158 (2020). doi: 10.1038/s42254-019-0143-2
[7] Di Leonardo, R. & Bianchi, S. Hologram transmission through multi-mode optical fibers. Opt. Express 19, 247-254 (2011). doi: 10.1364/OE.19.000247
[8] Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 109, 203901 (2012). doi: 10.1103/PhysRevLett.109.203901
[9] Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012). doi: 10.1038/ncomms2024
[10] Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010). doi: 10.1103/PhysRevLett.104.100601
[11] Popoff, S. et al. Image transmission through an opaque material. Nat. Commun. 1, 81 (2010). doi: 10.1038/ncomms1078
[12] Mosk, A. P. et al. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283-292 (2012). doi: 10.1038/nphoton.2012.88
[13] Rotter, S. & Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017). doi: 10.1103/RevModPhys.89.015005
[14] Carpenter, J., Eggleton, B. J. & Schröder, J. Observation of Eisenbud-Wigner-Smith states as principal modes in multimode fibre. Nat. Photonics 9, 751-757 (2015). doi: 10.1038/nphoton.2015.188
[15] Hong, P. L. et al. Three-dimensional spatially resolved optical energy density enhanced by wavefront shaping. Optica 5, 844-849 (2018). doi: 10.1364/OPTICA.5.000844
[16] Yılmaz, H. et al. Transverse localization of transmission eigenchannels. Nat. Photonics 13, 352-358 (2019). doi: 10.1038/s41566-019-0367-9
[17] Ambichl, P. et al. Focusing inside disordered media with the generalized Wigner-Smith operator. Phys. Rev. Lett. 119, 033903 (2017). doi: 10.1103/PhysRevLett.119.033903
[18] Horodynski, M. et al. Optimal wave fields for micromanipulation in complex scattering environments. Nat. Photonics 14, 149-153 (2020). doi: 10.1038/s41566-019-0550-z
[19] Matthès, M. W. et al. Optical complex media as universal reconfigurable linear operators. Optica 6, 465-472 (2019). doi: 10.1364/OPTICA.6.000465
[20] Leedumrongwatthanakun, S. et al. Programmable linear quantum networks with a multimode fibre. Nat. Photonics 14, 139-142 (2020). doi: 10.1038/s41566-019-0553-9
[21] Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232-234 (2012). doi: 10.1038/nature11578
[22] Judkewitz, B. et al. Translation correlations in anisotropically scattering media. Nat. Phys. 11, 684-689 (2015). doi: 10.1038/nphys3373
[23] Li, S. et al. Guide-star assisted imaging through multimode optical fibres. arXiv: 2005.06445 [physics. optics] (2020).
[24] Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photonics 9, 529-535 (2015). doi: 10.1038/nphoton.2015.112
[25] Candes, E. J. & Wakin, M. B. An introduction to compressive sampling. IEEE Signal Process. Mag. 25, 21-30 (2008). doi: 10.1109/MSP.2007.914731
[26] Sánchez-Ortiga, E. et al. Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit. Appl. Opt. 53, 2058-2066 (2014). doi: 10.1364/AO.53.002058
[27] Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871-18884 (2011). doi: 10.1364/OE.19.018871
[28] Papadopoulos, I. N. et al. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express 4, 260-270 (2013). doi: 10.1364/BOE.4.000260
[29] Ohayon, S. et al. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. Express 9, 1492-1509 (2018). doi: 10.1364/BOE.9.001492
[30] Turtaev, S. et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light. : Sci. Appl. 7, 92 (2018). doi: 10.1038/s41377-018-0094-x
[31] Flaes, D. E. B. et al. Robustness of light-transport processes to bending deformations in graded-index multimode waveguides. Phys. Rev. Lett. 120, 233901 (2018). doi: 10.1103/PhysRevLett.120.233901
[32] Amitonova, L. V., Mosk, A. P. & Pinkse, P. W. H. Rotational memory effect of a multimode fiber. Opt. Express 23, 20569-20575 (2015). doi: 10.1364/OE.23.020569
[33] Xiong, W. et al. Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling. Opt. Express 25, 2709-2724 (2017). doi: 10.1364/OE.25.002709
[34] Beck, A. & Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183-202 (2009). doi: 10.1137/080716542
[35] Brown, B. R. & Lohmann, A. W. Complex spatial filtering with binary masks. Appl. Opt. 5, 967-969 (1966). doi: 10.1364/AO.5.000967
[36] Lee, W. H. Binary computer-generated holograms. Appl. Opt. 18, 3661-3669 (1979). doi: 10.1364/AO.18.003661
[37] Mitchell, K. J. et al. High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. Opt. Express 24, 29269-29282 (2016). doi: 10.1364/OE.24.029269
[38] Turtaev, S. et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt. Express 25, 29874-29884 (2017). doi: 10.1364/OE.25.029874
[39] Mastiani, B., Ohn, T. L. & Vellekoop, I. M. Scanning a focus through scattering media without using the optical memory effect. Opt. Lett. 44, 5226-5229 (2019). doi: 10.1364/OL.44.005226
[40] Osnabrugge, G. et al. Generalized optical memory effect. Optica 4, 886-892 (2017). doi: 10.1364/OPTICA.4.000886
[41] Mounaix, M. et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett. 116, 253901 (2016). doi: 10.1103/PhysRevLett.116.253901
[42] Boniface, A. et al. Rapid broadband characterization of scattering medium using hyperspectral imaging. Optica 6, 274-279 (2019). doi: 10.1364/OPTICA.6.000274
[43] Trägårdh, J. et al. Label-free cars microscopy through a multimode fiber endoscope. Opt. Express 27, 30055-30066 (2019). doi: 10.1364/OE.27.030055
[44] Mounaix, M. & Carpenter, J. Control of the temporal and polarization response of a multimode fiber. Nat. Commun. 10, 5085 (2019). doi: 10.1038/s41467-019-13059-8
[45] Gordon, G. S. D. et al. Full-field quantitative phase and polarisation-resolved imaging through an optical fibre bundle. Opt. Express 27, 23929-23947 (2019). doi: 10.1364/OE.27.023929
[46] Antipa, N. et al. DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1-9 (2018). doi: 10.1364/OPTICA.5.000001
[47] Carpenter, J., Eggleton, B. J. & Schröder, J. 110x110 optical mode transfer matrix inversion. Opt. Express 22, 96-101 (2014). doi: 10.1364/OE.22.000096
[48] Borhani, N. et al. Learning to see through multimode fibers. Optica 5, 960-966 (2018). doi: 10.1364/OPTICA.5.000960
[49] Caramazza, P. et al. Transmission of natural scene images through a multimode fibre. Nat. Commun. 10, 2029 (2019). doi: 10.1038/s41467-019-10057-8
[50] Fan, P. F., Zhao, T. R. & Su, L. Deep learning the high variability and randomness inside multimode fibers. Opt. Express 27, 20241-20258 (2019). doi: 10.1364/OE.27.020241
[51] Xiong, W. et al. Deep learning of ultrafast pulses with a multimode fiber. APL Photonics 5, 096106 (2020). doi: 10.1063/5.0007037
[52] Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758-2769 (1982). doi: 10.1364/AO.21.002758
[53] Drémeau, A. et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express 23, 11898-11911 (2015). doi: 10.1364/OE.23.011898
[54] Howland, G. A., Lum, D. J. & Howell, J. C. Compressive wavefront sensing with weak values. Opt. Express 22, 18870-18880 (2014). doi: 10.1364/OE.22.018870
[55] Mirhosseini, M. et al. Compressive direct measurement of the quantum wave function. Phys. Rev. Lett. 113, 090402 (2014). doi: 10.1103/PhysRevLett.113.090402
[56] Liutkus, A. et al. Imaging with nature: compressive imaging using a multiply scattering medium. Sci. Rep. 4, 5552 (2014). doi: 10.1038/srep05552
[57] Amitonova, L. V. & De Boer, J. F. Compressive imaging through a multimode fiber. Opt. Lett. 43, 5427-5430 (2018). doi: 10.1364/OL.43.005427
[58] Caravaca-Aguirre, A. M. et al. Hybrid photoacoustic-fluorescence microendoscopy through a multimode fiber using speckle illumination. APL Photonics 4, 096103 (2019). doi: 10.1063/1.5113476
[59] Feldkhun, D. et al. Focusing and scanning through scattering media in microseconds. Optica 6, 72-75 (2019). doi: 10.1364/OPTICA.6.000072
[60] Tzang, O. et al. Wavefront shaping in complex media with a 350 khz modulator via a 1D-to-2D transform. Nat. Photonics 13, 788-793 (2019). doi: 10.1038/s41566-019-0503-6