[1] Liu, N. et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Letters 10, 2342-2348 (2010). doi: 10.1021/nl9041033
[2] Li, W. & Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Letters 14, 3510-3514 (2014). doi: 10.1021/nl501090w
[3] Bae, K. et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications 6, 10103 (2015). doi: 10.1038/ncomms10103
[4] Ghobadi, A. et al. Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture. Scientific Reports 7, 4755 (2017). doi: 10.1038/s41598-017-04964-3
[5] Yang, M. H., Gatto, A. & Kaiser, N. Optical thin films with high reflectance, low thickness and low stress for the spectral range from vacuum UV to near IR. Journal of Optics A:Pure and Applied Optics 8, 327-332 (2006). doi: 10.1088/1464-4258/8/3/016
[6] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[7] Kats, M. A. et al. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nature Materials 12, 20-24 (2013). doi: 10.1038/nmat3443
[8] Shaltout, A. M. et al. Ultrathin and multicolour optical cavities with embedded metasurfaces. Nature Communications 9, 2673 (2018). doi: 10.1038/s41467-018-05034-6
[9] Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206-211 (2014). doi: 10.1038/nature13487
[10] Lin, D. M. et al. Dielectric gradient metasurface optical elements. Science 345, 298-302 (2014). doi: 10.1126/science.1253213
[11] Heo, J., Huh, J. W. & Yoon, T. H. Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes. AIP Advances 5, 047118 (2015). doi: 10.1063/1.4918277
[12] Kim, M. et al. Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows. ACS Applied Materials & Interfaces 7, 17904-17909 (2015).
[13] Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016). doi: 10.1126/science.aag2472
[14] Tseng, M. L. et al. Metalenses: advances and applications. Advanced Optical Materials 6, 1800554 (2018). doi: 10.1002/adom.201800554
[15] Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Materials 6, 824-832 (2007). doi: 10.1038/nmat2009
[16] Gu, M., Zhang, Q. M. & Lamon, S. Nanomaterials for optical data storage. Nature Reviews Materials 1, 16070 (2016). doi: 10.1038/natrevmats.2016.70
[17] Aydin, K. et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications 2, 517 (2011). doi: 10.1038/ncomms1528
[18] Hedayati, M. K. et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Advanced Materials 23, 5410-5414 (2011). doi: 10.1002/adma.201102646
[19] Bossard, J. A. et al. Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8, 1517-1524 (2014). doi: 10.1021/nn4057148
[20] Ding, F. et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Scientific Reports 6, 39445 (2016). doi: 10.1038/srep39445
[21] Mader, S. & Martin, O. J. F. Mechanisms of perfect absorption in nano-composite systems. Optics Express 26, 27089-27100 (2018). doi: 10.1364/OE.26.027089
[22] Cesario, J. et al. Electromagnetic coupling between a metal nanoparticle grating and a metallic surface. Optics Letters 30, 3404-3406 (2005). doi: 10.1364/OL.30.003404
[23] Teperik, T. V., Popov, V. V. & de Abajo, F. J. G. Void plasmons and total absorption of light in nanoporous metallic films. Physical Review B 71, 085408 (2005). doi: 10.1103/PhysRevB.71.085408
[24] Berean, K. J. et al. Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption. Advanced Optical Materials 4, 1247-1254 (2016). doi: 10.1002/adom.201600166
[25] Li, Z. Y. et al. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Scientific Reports 5, 15137 (2015). doi: 10.1038/srep15137
[26] Feng, P., Li, W. D. & Zhang, W. H. Dispersion engineering of plasmonic nanocomposite for ultrathin broadband optical absorber. Optics Express 23, 2328-2338 (2015). doi: 10.1364/OE.23.002328
[27] Zywietz, U. et al. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nature Communications 5, 3402 (2014). doi: 10.1038/ncomms4402
[28] Mao, F. et al. Direct laser writing of gold nanostructures: application to data storage and color nanoprinting. Plasmonics 13, 2285-2291 (2018). doi: 10.1007/s11468-018-0751-1
[29] Guay, J. M. et al. Laser-induced plasmonic colours on metals. Nature Communications 8, 16095 (2017). doi: 10.1038/ncomms16095
[30] Odintsova, G. V. et al. High-resolution large-scale plasmonic laser color printing for jewelry applications. Optics Express 27, 3672-3681 (2019). doi: 10.1364/OE.27.003672
[31] Zhu, X. L. et al. Plasmonic colour laser printing. Nature Nanotechnology 11, 325-329 (2016). doi: 10.1038/nnano.2015.285
[32] Nyga, P. et al. Laser-induced color printing on semicontinuous silver films: red, green and blue. Optical Materials Express 9, 1528-1538 (2019). doi: 10.1364/OME.9.001528
[33] Roberts, A. S. et al. Laser writing of bright colors on near-percolation plasmonic reflector arrays. ACS Nano 13, 71-77 (2019). doi: 10.1021/acsnano.8b07541
[34] Siegel, J. et al. UV-laser ablation of ductile and brittle metal films. Applied Physics A 64, 213-218 (1997). doi: 10.1007/s003390050468
[35] Wang, M. R. & Su, H. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication. Applied Optics 37, 7568-7576 (1998). doi: 10.1364/AO.37.007568
[36] Guo, C. F. et al. Grayscale photomask fabricated by laser direct writing in metallic nano-films. Optics Express 17, 19981-19987 (2009). doi: 10.1364/OE.17.019981
[37] Guo, C. F. et al. MTMO grayscale photomask. Optics Express 18, 2621-2631 (2010). doi: 10.1364/OE.18.002621
[38] Wei, T. et al. Grayscale image recording on Ge2Sb2Te5 thin films through laser-induced structural evolution. Scientific Reports 7, 42712 (2017).
[39] 2D-Barcode-Fibel. 7th ed. at https://barcodat.com/wordpress/wp-content/uploads/2017/08/Barcodat-2D-Code-Fibel_WEB.pdf. (2021).
[40] Javidi, B. et al. Roadmap on optical security. Journal of Optics 18, 083001 (2016). doi: 10.1088/2040-8978/18/8/083001
[41] Ameling, R. & Giessen, H. Microcavity plasmonics: strong coupling of photonic cavities and plasmons. Laser & Photonics Reviews 7, 141-169 (2013).
[42] Renesse, R. L. Interference-based security features. in Optical Document Security 3rd edn, 223-264 (Boston: Artech House, 2005).
[43] Wang, H. C. et al. Ultrathin planar cavity metasurfaces. Small 14, 1703920 (2018). doi: 10.1002/smll.201703920
[44] Lumerical Inc. FDTD Solutions R2017a. at https://www.lumerical.com/products/fdtd/. (2021).
[45] Stoner, G. R., Albright, T. D. & Ramachandran, V. S. Transparency and coherence in human motion perception. Nature 344, 153-155 (1990). doi: 10.1038/344153a0
[46] van Renesse, R. L. Optical Document Security. (Boston: Artech House, 2005).
[47] Wu, Y., Fowlkes, J. D. & Rack, P. D. The optical properties of Cu-Ni nanoparticles produced via pulsed laser dewetting of ultrathin films: the effect of nanoparticle size and composition on the plasmon response. Journal of Materials Research 26, 277-287 (2011). doi: 10.1557/jmr.2010.9
[48] Oh, Y. & Lee, M. Single-pulse transformation of Ag thin film into nanoparticles via laser-induced dewetting. Applied Surface Science 399, 555-564 (2017). doi: 10.1016/j.apsusc.2016.12.027
[49] Font, F., Afkhami, S. & Kondic, L. Substrate melting during laser heating of nanoscale metal films. International Journal of Heat and Mass Transfer 113, 237-245 (2017). doi: 10.1016/j.ijheatmasstransfer.2017.05.072
[50] Qi, D. F. et al. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation. Applied Physics Letters 108, 211602 (2016). doi: 10.1063/1.4952597
[51] Rakić, A. D. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Applied Optics 34, 4755-4767 (1995). doi: 10.1364/AO.34.004755
[52] Lozanova, V. et al. Optical and electrical properties of very thin chromium films for optoelectronic devices. Journal of Physics:Conference Series 514, 012003 (2014). doi: 10.1088/1742-6596/514/1/012003
[53] Marcos, L. V. R. et al. A. Self-consistent optical constants of MgF2, LaF3, and CeF3 films. Optical Materials Express 7, 989-1006 (2017). doi: 10.1364/OME.7.000989