[1] Y. Fu et al. Spatially encoded multibeam laser doppler vibrometry using a single photodetector. Optics Letters 35, 1356-1358 (2010). doi: 10.1364/OL.35.001356
[2] P. B. Phua et al. Multi-beam laser doppler vibrometer with fiber sensing head. AIP Conference Proceedings 1457, 219-226, 06 (2012).
[3] T. Haist et al. Characterization and demonstration of a 12-channel laser-doppler vibrometer. volume 8788. Proceedings of SPIE, 2013.
[4] C. Yang et al. A multi-point laser doppler vibrometer with fiber-based configuration. Review of scientific instruments 84, 121702 (2013). doi: 10.1063/1.4845335
[5] R. D. Burgett et al. Mobile mounted laser Doppler vibrometer array for acoustic landmine detection. In Detection and Remediation Technologies for Mines and Minelike Targets VIII, volume 5089, pages 665–672. Proceedings of SPIE, 2003.
[6] W. N. MacPherson et al. Multipoint laser vibrometer for modal analysis. Applied Optics 46, 3126-3132 (2007). doi: 10.1364/AO.46.003126
[7] J. M. Kilpatrick & Markov V. Matrix laser vibrometer for transient modal imaging and rapid nondestructive testing. In Eighth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, volume 7098. Proceedings of SPIE, 2008.
[8] Polytec GmbH. https://www.polytec.com/de/vibrometrie/produkte/full-field-vibrometer/mpv-800-multipoint-vibrometer. (2021-11-04).
[9] D. Kim et al. 3-d vibration measurement using a single laser scanning vibrometer by moving to three different locations. IEEE Transactions on Instrumentation and Measurement 63, 2028-2033 (2014). doi: 10.1109/TIM.2014.2302244
[10] K. Kokkonen & M. Kaivola. Scanning heterodyne laser interferometer for phase-sensitive absoluteamplitude measurements of surface vibrations. Applied Physics Letters 92, (2008).
[11] S. Kim et al. A vision system for identifying structural vibration in civil engineering constructions. In Proceedings of 2006 SICE-ICASE International Joint Conference. IEEE, 2006.
[12] D. Ribeiro et al. Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system. Engineering Structures 75, 164-180 (2014). doi: 10.1016/j.engstruct.2014.04.051
[13] A. M. Wahbeh et al. A vision-based approach for the direct measurement of displacements in vibrating systems. Smart Materials and Structures 12, 785-794 (2003). doi: 10.1088/0964-1726/12/5/016
[14] S. Patsias & W. J. Staszewskiy. Damage detection using optical measurements and wavelets. Structural Health Monitoring 1, 5-22 (2002). doi: 10.1177/147592170200100102
[15] H. Y. Wu et al. Eulerian video magnification for revealing subtle changes in the world. ACM Transactions on Graphics 31, (2012).
[16] J. G. Chen et al. Modal identification of simple structures with high-speed video using motion magnification. JournalofSoundandVibration 345, 58-71 (2015). doi: 10.1016/j.jsv.2015.01.024
[17] J. G. Chen et al. Video camera-based vibration measurement for civil infrastructure applications. Journal of Infrastructure Systems 23, B4016013 (2017).
[18] N. Wadhwa et al. Phase-based video motion processing. ACM Transactions on Graphics 32, (2013).
[19] Z. Liu et al. Time-varying motion filtering for visionbased nonstationary vibration measurement. IEEE Transactions on Instrumentation and Measurement 69, 3907-3916 (2020). doi: 10.1109/TIM.2019.2937531
[20] Z. Liu et al. Vision-based vibration measurement by sensing motion of spider silk. Procedia Manufacturing 49, 126-131 (2020).
[21] L. P. Yu & B. Pan. Single-camera high-speed stereo-digital image correlation for full-field vibration measurement. Mechanical Systems and Signal Processing 94, 374-383 (2017). doi: 10.1016/j.ymssp.2017.03.008
[22] G. D’Emilia, L. Razzè & E. Zappa. Uncertainty analysis of high frequency image-based vibration measurements. Measurement 46(8), 2630-2637 (2013). doi: 10.1016/j.measurement.2013.04.075
[23] T. Haist et al. Multi-image position detection. Optics express 22, 14450-14463 (2014). doi: 10.1364/OE.22.014450
[24] R. D. Gow et al. A comprehensive tool for modeling cmos image-sensor-noise performance. IEEE Transactions on Electron Devices 54, 1321-1329 (2007). doi: 10.1109/TED.2007.896718
[25] B. F. Alexander & K. C. Ng. Elimination of systematic error in subpixel accuracy centroid estimation [also Letter 34(11)3347-3348(Nov1995)]. Optical Engineering 30, 1320-1331 (1991). doi: 10.1117/12.55947
[26] M. R. Shortis, T. A. Clarke & T. Short. Comparison of some techniques for the subpixel location of discrete target images. In Videometrics III, pages 239–250. Proceedings of SPIE 2350, 1994.
[27] S. Thomas. Optimized centroid computing in a shackhartmann sensor. In Advancements in Adaptive Optics, volume 5490. Proceedings of SPIE, 2004.
[28] F. Schaal et al. Applications of diffractive optical elements for optical measurement techniques. In Holography, Diffractive Optics, and Applications VI, volume 9271, pages 1–7. SPIE, 2014.
[29] S. Hartlieb et al. Hochgenaue kalibrierung eines holografischen multi-punkt positionsmesssystems. tm - Technisches Messen 87, 504-513 (2020). doi: 10.1515/teme-2019-0153
[30] S. Hartlieb et al. Highly accurate imaging based position measurement using holographic point replication. Measurement 172, 108852 (2021). doi: 10.1016/j.measurement.2020.108852
[31] T. Schmidt, J. Tyson & K. Galanulis. Full-field dynamic displacement and strain measurement using advanced 3d image correlation photogrammetry: part 1. Experimental Techniques 27, 47-50 (2003).
[32] F. Guerra et al. Precise building deformation measurement using holographic multipoint replication. Applied Optics 59(9), 2746-2753 (2020). doi: 10.1364/AO.385594
[33] S. Hartlieb et al. Accurate 3D coordinate measurement using holographic multipoint technique. In Optics and Photonics for Advanced Dimensional Metrology, volume 11352, pages 1–12. Proceedings of SPIE, 2020.