[1] Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013; 339: 1232009. doi: 10.1126/science.1232009
[2] Yu NF, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014; 13: 139–150. doi: 10.1038/nmat3839
[3] Chen HT, Taylor AJ, Yu NF. A review of metasurfaces: physics and applications. Rep Prog Phys 2016; 79: 076401. doi: 10.1088/0034-4885/79/7/076401
[4] Ding F, Pors A, Bozhevolnyi SI. Gradient metasurfaces: a review of fundamentals and applications. Rep Prog Phys 2018; 81: 026401. doi: 10.1088/1361-6633/aa8732
[5] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011; 334: 333–337. doi: 10.1126/science.1210713
[6] Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science 2012; 335: 427. doi: 10.1126/science.1214686
[7] Sun SL, Yang KY, Wang CM, Juan TK, Chen WT et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 2012; 12: 6223–6229. doi: 10.1021/nl3032668
[8] Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 2013; 110: 197401. doi: 10.1103/PhysRevLett.110.197401
[9] Pors A, Albrektsen O, Radko IP, Bozhevolnyi SI. Gap plasmon-based metasurfaces for total control of reflected light. Sci Rep 2013; 3: 2155. doi: 10.1038/srep02155
[10] Niu TM, Withayachumnankul W, Upadhyay A, Gutruf P, Abbott D et al. Terahertz reflectarray as a polarizing beam splitter. Opt Express 2014; 22: 16148–16160. doi: 10.1364/OE.22.016148
[11] Sun SL, He Q, Xiao SY, Xu Q, Li X et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 2012; 11: 426–431. doi: 10.1038/nmat3292
[12] Qu C, Xiao SY, Sun SL, He Q, Zhou L. A theoretical study on the conversion efficiencies of gradient meta-surfaces. EPL 2013; 101: 54002. doi: 10.1209/0295-5075/101/54002
[13] Lin J, Mueller JPB, Wang Q, Yuan GH, Antoniou N et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 2013; 340: 331–334. doi: 10.1126/science.1233746
[14] Huang LL, Chen XZ, Bai BF, Tan QF, Jin GF et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci Appl 2013; 2: e70, doi: 10.1038/lsa.2013.26.
[15] Pors A, Nielsen MG, Bernardin T, Weeber JC, Bozhevolnyi SI. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci Appl 2014; 3: e197, doi: 10.1038/lsa.2014.78.
[16] Sun WJ, He Q, Sun SL, Zhou L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci Appl 2016; 5: e16003, doi: 10.1038/lsa.2016.3.
[17] Ohana D, Levy U. Mode conversion based on dielectric metamaterial in silicon. Opt Express 2014; 22: 27617–27631. doi: 10.1364/OE.22.027617
[18] Ohana D, Desiatov B, Mazurski N, Levy U. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett 2016; 16: 7956–7961. doi: 10.1021/acs.nanolett.6b04264
[19] Aieta F, Genevet P, Kats MA, Yu NF, Blanchard R et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012; 12: 4932–4936. doi: 10.1021/nl302516v
[20] Li X, Xiao SY, Cai BG, He Q, Cui TJ et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt Lett 2012; 37: 4940–4942. doi: 10.1364/OL.37.004940
[21] Ni XJ, Ishii S, Kildishev AV, Shalaev VM. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci Appl 2013; 2: e72, doi: 10.1038/lsa.2013.28.
[22] Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 2013; 13: 829–834. doi: 10.1021/nl304761m
[23] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 2016; 352: 1190–1194. doi: 10.1126/science.aaf6644
[24] Chen WT, Yang KY, Wang CM, Huang YW, Sun G et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 2014; 14: 225–230. doi: 10.1021/nl403811d
[25] Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys 2015; 78: 024401. doi: 10.1088/0034-4885/78/2/024401
[26] Zheng G, Mühlenbernd H, Kenney M, Li GX, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 2015; 10: 308–312. doi: 10.1038/nnano.2015.2
[27] Tsai YJ, Larouche S, Tyler T, Llopis A, Royal M et al. Arbitrary birefringent metamaterials for holographic optics at λ=1.55 μm. Opt Express 2013; 21: 26620–26630.
[28] Desiatov B, Mazurski N, Fainman Y, Levy U. Polarization selective beam shaping using nanoscale dielectric metasurfaces. Opt Express 2015; 23: 22611–22618. doi: 10.1364/OE.23.022611
[29] Mueller JPB, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 2017; 118: 113901. doi: 10.1103/PhysRevLett.118.113901
[30] Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 2014; 3: e218, doi: 10.1038/lsa.2014.99.
[31] Liu S, Cui TJ, Xu Q, Bao D, Du LL et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci Appl 2016; 5: e16076, doi: 10.1038/lsa.2016.76.
[32] Pors A, Ding F, Chen YT, Radko IR, Bozhevolnyi SI. Random-phase metasurfaces at optical wavelengths. Sci Rep 2016; 6: 28448. doi: 10.1038/srep28448
[33] Pors A, Nielsen MG, Bozhevolnyi SI. Broadband plasmonic half-wave plates in reflection. Opt Lett 2013; 38: 513–515. doi: 10.1364/OL.38.000513
[34] Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013; 340: 1304–1307. doi: 10.1126/science.1235399
[35] Ding F, Wang ZX, He SL, Shalaev VM, Kildishev AV. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano 2015; 9: 4111–4119. doi: 10.1021/acsnano.5b00218
[36] Liu ZY, Wang QJ, Yuan LR, Zhu YY. A multi-functional plasmonic metasurface for anomalous reflection and optical rotation on the basis of anisotropic building blocks. J Phys D Appl Phys 2017; 50: 245103. doi: 10.1088/1361-6463/aa6fcf
[37] Pors A, Nielsen MG, Bozhevolnyi SI. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2015; 2: 716–723. doi: 10.1364/OPTICA.2.000716
[38] Balthasar Mueller JP, Leosson K, Capasso F. Ultracompact metasurface in-line polarimeter. Optica 2016; 3: 42–47. doi: 10.1364/OPTICA.3.000042
[39] Chen WT, Török P, Foreman MR, Liao CY, Tsai WY et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 2016; 27: 224002. doi: 10.1088/0957-4484/27/22/224002
[40] Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma ML et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 2016; 352: 1202–1206. doi: 10.1126/science.aaf3417
[41] Ding F, Pors A, Chen YT, Zenin VA, Bozhevolnyi SI. Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces. ACS Photonics 2017; 4: 943–949. doi: 10.1021/acsphotonics.6b01046
[42] Veksler D, Maguid E, Shitrit N, Ozeri D, Kleiner V et al. Multiple wavefront shaping by metasurface based on mixed random antenna groups. ACS Photonics 2015; 2: 661–667. doi: 10.1021/acsphotonics.5b00113
[43] Maguid E, Yulevich I, Yannai M, Kleiner V, Brongersma ML et al. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light Sci Appl 2017; 6: e17027, doi: 10.1038/lsa.2017.27.
[44] Cai T, Tang SW, Wang GM, Xu HX, Sun SL et al. High-performance bifunctional metasurfaces in transmission and reflection geometries. Adv Opt Mater 2017; 5: 1600506. doi: 10.1002/adom.201600506
[45] Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 1972; 6: 4370–4379. doi: 10.1103/PhysRevB.6.4370
[46] Lu CC, Hu XY, Yang H, Gong QH. Ultrawide-band unidirectional surface plasmon polariton launchers. Adv Opt Mater 2013; 1: 792–797. doi: 10.1002/adom.201300174
[47] Lei ZY, Yang T. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons. Appl Phys Lett 2016; 108: 161105. doi: 10.1063/1.4947431
[48] Wu YW, Zhang CD, Estakhri M, Zhao Y, Kim J et al. Intrinsic optical properties and enhanced plasmonic response of epitaxial silver. Adv Mater 2014; 26: 6106–6110. doi: 10.1002/adma.201401474
[49] Baron A, Devaux E, Rodier JC, Hugonin JP, Rousseau E et al. Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons. Nano Lett 2011; 11: 4207–4212. doi: 10.1021/nl202135w
[50] Radko IP, Bozhevolnyi SI, Brucoli G, Martín-Moreno L, García-Vidal FJ et al. Efficient unidirectional ridge excitation of surface plasmons. Opt Express 2009; 17: 7228–7232. doi: 10.1364/OE.17.007228
[51] Deshpande R, Pors A, Bozhevolnyi SI. Third-order gap plasmon based metasurfaces for visible light. Opt Express 2017; 25: 12508–12517. doi: 10.1364/OE.25.012508
[52] López-Tejeira F, Rodrigo SG, Martín-Moreno L, García-Vidal FJ, Devaux E et al. Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 2007; 3: 324–328. doi: 10.1038/nphys584
[53] Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photonics 2010; 4: 83–91. doi: 10.1038/nphoton.2009.282