[1] Fan, F. et al. A monolithic white laser. Nat. Nanotechnol. 10, 796–803 (2015). doi: 10.1038/nnano.2015.149
[2] Kim, J., Piao, Y. Z. & Hyeon, T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 38, 372–390 (2009). doi: 10.1039/B709883A
[3] Carlton, P. M. et al. Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc. Natl Acad. Sci. USA 107, 16016–16022 (2010). doi: 10.1073/pnas.1004037107
[4] Wrobel, A. T. et al. A fast and selective near-infrared fluorescent sensor for multicolor imaging of biological nitroxyl (HNO). J. Am. Chem. Soc. 136, 4697–4705 (2014). doi: 10.1021/ja500315x
[5] Wang, L. V. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 3, 503–509 (2009). doi: 10.1038/nphoton.2009.157
[6] Rocha, U. et al. Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano 7, 1188–1199 (2013). doi: 10.1021/nn304373q
[7] Miyazaki, J. et al. Simultaneous dual-wavelength imaging of nonfluorescent tissues with 3D subdiffraction photothermal microscopy. Opt. Express 23, 3647–3656 (2015). doi: 10.1364/OE.23.003647
[8] Miyazaki, J. & Kobayahsi, T. Photothermal microscopy for high sensitivity and high resolution absorption contrast imaging of biological tissues. Photonics 4, 32 (2017). doi: 10.3390/photonics4020032
[9] Galanzha, E. I. et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4, 855–860 (2009). doi: 10.1038/nnano.2009.333
[10] Zharov, V. P. Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit. Nat. Photonics 5, 110–116 (2011). doi: 10.1038/nphoton.2010.280
[11] Graydon, O. Imaging polarization. Nat. Photonics 7, 343 (2013).
[12] Gurjar, R. S. et al. Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat. Med. 7, 1245–1248 (2001). doi: 10.1038/nm1101-1245
[13] Zhang, C. H. et al. Dual-color single-mode lasing in axially coupled organic nanowire resonators. Sci. Adv. 3, e1700225 (2017). doi: 10.1126/sciadv.1700225
[14] Mukherjee, A., Shim, Y. & Myong Song, J. Quantum dot as probe for disease diagnosis and monitoring. Biotechnol. J. 11, 31–42 (2016). doi: 10.1002/biot.201500219
[15] Huang, L. et al. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance. Adv. Mater. 30, 1800596 (2018). doi: 10.1002/adma.201800596
[16] Xu, J. Y. et al. Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. J. Am. Chem. Soc. 134, 12394–12397 (2012). doi: 10.1021/ja3050458
[17] Liu, Z. C. et al. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett. 13, 4945–4950 (2013). doi: 10.1021/nl4029686
[18] Yang, Z. Y. et al. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires. Nano Lett. 14, 3153–3159 (2014). doi: 10.1021/nl500432m
[19] Fan, F. et al. Simultaneous two-color lasing in a single CdSSe heterostructure nanosheet. Semiconductor Sci. Technol. 28, 065005 (2013). doi: 10.1088/0268-1242/28/6/065005
[20] Zhang, W., Yao, J. N. & Zhao, Y. S. Organic micro/nanoscale lasers. Acc. Chem. Res. 49, 1691–1700 (2016). doi: 10.1021/acs.accounts.6b00209
[21] Cui, Y. J. et al. Photonic functional metal-organic frameworks. Chem. Soc. Rev. 47, 5740–5785 (2018). doi: 10.1039/C7CS00879A
[22] Furukawa, H. et al. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013). doi: 10.1126/science.1230444
[23] Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004). doi: 10.1002/anie.200300610
[24] Feng, L. et al. The chemistry of multi-component and hierarchical framework compounds. Chem. Soc. Rev. 48, 4823–4853 (2019). doi: 10.1039/C9CS00250B
[25] Wang, X. et al. Pore environment engineering in metal-organic frameworks for efficient ethane/ethylene separation. J. Mater. Chem. A 7, 13585–13590 (2019). doi: 10.1039/C9TA02822F
[26] He, H. J. et al. Polarized three-photon-pumped laser in a single MOF microcrystal. Nat. Commun. 7, 11087 (2016). doi: 10.1038/ncomms11087
[27] Zhang, Y. et al. Dual-wavelength lasing from organic dye encapsulated metal-organic framework microcrystals. Chem. Commun. 55, 3445–3448 (2019). doi: 10.1039/C8CC10232E
[28] He, H. J. et al. Periodically aligned dye molecules integrated in a single MOF microcrystal exhibit single-mode linearly polarized lasing. Adv. Optical Mater. 5, 1601040 (2017). doi: 10.1002/adom.201601040
[29] He, H. J. et al. MOF-based organic microlasers. Adv. Optical Mater. 7, 1900077 (2019). doi: 10.1002/adom.201900077
[30] Yu, J. C. et al. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat. Commun. 4, 2719 (2013). doi: 10.1038/ncomms3719
[31] Li, H. J. et al. Dual-band simultaneous lasing in MOFs single crystals with Fabry-Perot microcavities. Sci. China Chem. 62, 987–993 (2019). doi: 10.1007/s11426-019-9485-4
[32] Liu, X. Y. et al. Using a multi-shelled hollow metal-organic framework as a host to switch the guest-to-host and guest-to-guest interactions. Angew. Chem. Int. Ed. 57, 2110–2114 (2018). doi: 10.1002/anie.201711600
[33] Jayachandrababu, K. C., Sholl, D. S. & Nair, S. Structural and mechanistic differences in mixed-linker zeolitic imidazolate framework synthesis by solvent assisted linker exchanc dotge and de Novo routes. J. Am. Chem. Soc. 139, 5906–5915 (2017). doi: 10.1021/jacs.7b01660
[34] Zhou, Z. H. et al. Organic printed core-shell heterostructure arrays: a universal approach to all-color laser display panels. Angew. Chem. Int. Ed. 59, 11814–11818 (2020). doi: 10.1002/anie.202002580
[35] Zhu, H. M. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015). doi: 10.1038/nmat4271