[1] Cui, X. M. et al. Photothermal nanomaterials: a powerful light-to-heat converter. Chemical Reviews 123, 6891-6952 (2023). doi: 10.1021/acs.chemrev.3c00159
[2] Arami, H. et al. Remotely controlled near-infrared-triggered photothermal treatment of brain tumours in freely behaving mice using gold nanostars. Nature Nanotechnology 17, 1015-1022 (2022). doi: 10.1038/s41565-022-01189-y
[3] Kim, J. W. et al. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nature Nanotechnology 4, 688-694 (2009). doi: 10.1038/nnano.2009.231
[4] Bao, X. et al. In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light: Science & Applications 7, 91 (2018).
[5] Seki, S. et al. Thermal generation of spin current in an antiferromagnet. Physical Review Letters 115, 266601 (2015). doi: 10.1103/PhysRevLett.115.266601
[6] Araki, T. et al. Broadband photodetectors and imagers in stretchable electronics packaging. Advanced Materials 36, 2304048 (2024). doi: 10.1002/adma.202304048
[7] Bunes, B. R. et al. Photodoping and enhanced visible light absorption in single-walled carbon nanotubes functionalized with a wide band gap oligomer. Advanced Materials 27, 162-167 (2015). doi: 10.1002/adma.201404112
[8] Zhang, M. Y. et al. Large-area and broadband thermoelectric infrared detection in a carbon nanotube black-body absorber. ACS Nano 13, 13285-13292 (2019). doi: 10.1021/acsnano.9b06332
[9] Lu, X. W. et al. Progress of photodetectors based on the photothermoelectric effect. Advanced Materials 31, 1902044 (2019). doi: 10.1002/adma.201902044
[10] Yu, L. X. Pharmaceutical quality by design: product and process development, understanding, and control. Pharmaceutical Research 25, 781-791 (2008). doi: 10.1007/s11095-007-9511-1
[11] Bai, P. et al. Broadband THz to NIR up-converter for photon-type THz imaging. Nature Communications 10, 3513 (2019). doi: 10.1038/s41467-019-11465-6
[12] Li, K. et al. Robot-assisted, source-camera-coupled multi-view broadband imagers for ubiquitous sensing platform. Nature Communications 12, 3009 (2021). doi: 10.1038/s41467-021-23089-w
[13] Li, K. et al. A chemically enriched, repeatedly deformable, and self-recoverable broadband wireless imager sheet. Communications Materials 6, 147 (2025). doi: 10.1038/s43246-025-00872-6
[14] Guo, W. L. et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices. Advanced Science 7, 1902699 (2020). doi: 10.1002/advs.201902699
[15] Nonoguchi, Y. et al. Simple salt-coordinated n-type nanocarbon materials stable in air. Advanced Functional Materials 26, 3021-3028 (2016). doi: 10.1002/adfm.201600179
[16] Kubota, M. et al. In-line multi-wavelength non-destructive pharma quality monitoring with ultrabroadband carbon nanotubes photo-thermoelectric imaging scanners. Light: Science & Applications 14, 306 (2025).
[17] Takai, L. et al. n-type carbon nanotube inks for high-yield printing of ultrabroadband soft photo-imager thin sheets. FlexMat 2, 115-125 (2025).
[18] Dong, Y. S. et al. Mitochondria-targeting Cu3VS4 nanostructure with high copper ionic mobility for photothermoelectric therapy. Science Advances 9, eadi9980 (2023). doi: 10.1126/sciadv.adi9980
[19] Zhang, H. Q., Liu, Y. P. & Qu, S. N. Recent advances in photo-responsive carbon dots for tumor therapy. Responsive Materials 2, e20240012 (2024). doi: 10.1002/rpm.20240012
[20] Wang, Q. C. et al. Combination of efficient red fluorescence and high photothermal conversion in the second near-infrared window from carbon dots through photoinduced sodium-doping approach. Advanced Functional Materials 34, 2402976 (2024). doi: 10.1002/adfm.202402976
[21] Irshad, M. S. et al. Advances of 2D-enabled photothermal materials in hybrid solar-driven interfacial evaporation systems toward water-fuel-energy crisis. Advanced Functional Materials 33, 2304936 (2023). doi: 10.1002/adfm.202304936
[22] Basu, R. A holistic review on alternate sustainable energy source embracing photo-thermo-electric and photo-thermoelectric effect: phonetically similar with dissimilar working principle. Applied Energy 375, 124127 (2024). doi: 10.1016/j.apenergy.2024.124127