[1] |
Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003). doi: 10.1038/nature01939 |
[2] |
Vollmer, F. & Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5, 591–596 (2008). doi: 10.1038/nmeth.1221 |
[3] |
Baaske, M. D., Foreman, M. R. & Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 9, 933–939 (2014). doi: 10.1038/nnano.2014.180 |
[4] |
Toropov, N. et al. Review of biosensing with whispering-gallery mode lasers. Light. : Sci. Appl. 10, 42 (2021). doi: 10.1038/s41377-021-00471-3 |
[5] |
Liu, Z. J. et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 123, 253901 (2019). doi: 10.1103/PhysRevLett.123.253901 |
[6] |
Liu, H. Z. et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat. Phys. 14, 1006–1010 (2018). doi: 10.1038/s41567-018-0233-6 |
[7] |
Gérard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998). doi: 10.1103/PhysRevLett.81.1110 |
[8] |
Liu, F. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018). doi: 10.1038/s41565-018-0188-x |
[9] |
Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019). doi: 10.1038/s41565-019-0435-9 |
[10] |
Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019). doi: 10.1103/PhysRevLett.122.113602 |
[11] |
Takahashi, Y. et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498, 470–474 (2013). doi: 10.1038/nature12237 |
[12] |
Yu, M. J. et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light. : Sci. Appl. 9, 9 (2020). doi: 10.1038/s41377-020-0246-7 |
[13] |
Xue, X. X. et al. Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. Light. : Sci. Appl. 6, e16253 (2017). doi: 10.1038/lsa.2016.253 |
[14] |
Lu, X. Y. et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat. Photonics 13, 593–601 (2019). doi: 10.1038/s41566-019-0464-9 |
[15] |
Zhang, X. Y. et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics 13, 21–24 (2019). doi: 10.1038/s41566-018-0297-y |
[16] |
Marty, G. et al. Photonic crystal optical parametric oscillator. Nat. Photonics 15, 53–58 (2021). doi: 10.1038/s41566-020-00737-z |
[17] |
Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340–345 (2016). doi: 10.1038/nphoton.2016.23 |
[18] |
Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics 13, 770–775 (2019). doi: 10.1038/s41566-019-0494-3 |
[19] |
Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 6, 399–403 (2021). doi: 10.1038/s41565-020-00831-x |
[20] |
Nomura, M. et al. Enhancement of light emission from single quantum dot in photonic crystal nanocavity by using cavity resonant excitation. Appl. Phys. Lett. 89, 241124 (2006). doi: 10.1063/1.2408636 |
[21] |
Kaniber, M. et al. Efficient and selective cavity-resonant excitation for single photon generation. N. J. Phys. 11, 013031 (2009). doi: 10.1088/1367-2630/11/1/013031 |
[22] |
Madsen, K. H. et al. Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity. Phys. Rev. B 90, 155303 (2014). doi: 10.1103/PhysRevB.90.155303 |
[23] |
Fang, L. & Wang, J. Intrinsic transverse spin angular momentum of fiber eigenmodes. Phys. Rev. A 95, 053827 (2017). doi: 10.1103/PhysRevA.95.053827 |
[24] |
Le Kien, F. et al. Higher-order modes of vacuum-clad ultrathin optical fibers. Phys. Rev. A 96, 023835 (2017). doi: 10.1103/PhysRevA.96.023835 |
[25] |
Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015). doi: 10.1103/RevModPhys.87.347 |
[26] |
Buckley, S., Rivoire, K. & Vučković, J. Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012). doi: 10.1088/0034-4885/75/12/126503 |
[27] |
Englund, D. et al. Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity. Phys. Rev. Lett. 104, 073904 (2010). doi: 10.1103/PhysRevLett.104.073904 |
[28] |
Quilter, J. H. et al. Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation. Phys. Rev. Lett. 114, 137401 (2015). doi: 10.1103/PhysRevLett.114.137401 |
[29] |
Reindl, M. et al. Highly indistinguishable single photons from incoherently excited quantum dots. Phys. Rev. B 100, 155420 (2019). doi: 10.1103/PhysRevB.100.155420 |
[30] |
Pooley, M. A. et al. Controlled-NOT gate operating with single photons. Appl. Phys. Lett. 100, 211103 (2012). doi: 10.1063/1.4719077 |
[31] |
Jones, A. M. et al. Excitonic luminescence upconversion in a two-dimensional semiconductor. Nat. Phys. 12, 323–327 (2016). doi: 10.1038/nphys3604 |
[32] |
Gérard, J. M. et al. Quantum boxes as active probes for photonic microstructures: the pillar microcavity case. Appl. Phys. Lett. 69, 449–451 (1996). doi: 10.1063/1.118135 |
[33] |
Reitzenstein, S. & Forchel, A. Quantum dot micropillars. J. Phys. D: Appl. Phys. 43, 033001 (2010). doi: 10.1088/0022-3727/43/3/033001 |
[34] |
Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016). doi: 10.1103/PhysRevLett.116.020401 |
[35] |
He, Y. M. et al. Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging. Optica 4, 802–808 (2017). doi: 10.1364/OPTICA.4.000802 |
[36] |
Su, R. L. et al. Bright and pure single-photons from quantum dots in micropillar cavities under up-converted excitation. Sci. Bull. 63, 739–742 (2018). doi: 10.1016/j.scib.2018.05.024 |
[37] |
Liu, S. F. et al. A deterministic quantum dot micropillar single photon source with > 65% extraction efficiency based on fluorescence imaging method. Sci. Rep. 7, 13986 (2017). doi: 10.1038/s41598-017-13433-w |
[38] |
Liu, J. et al. Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters. Rev. Sci. Instrum. 88, 023116 (2017). doi: 10.1063/1.4976578 |
[39] |
Smolka, S. et al. Probing the statistical properties of Anderson localization with quantum emitters. N. J. Phys. 13, 063044 (2011). doi: 10.1088/1367-2630/13/6/063044 |
[40] |
Regelman, D. V. et al. Spectroscopy of positively and negatively charged quantum dots: wave function extent of holes and electrons. Phys. E: Low. -dimensional Syst. Nanostruct. 13, 114–118 (2002). doi: 10.1016/S1386-9477(01)00499-4 |
[41] |
Ediger, M. et al. Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots. Nat. Phys. 3, 774–779 (2007). doi: 10.1038/nphys748 |
[42] |
Dalgarno, P. A. et al. Hole recapture limited single photon generation from a single n-type charge-tunable quantum dot. Appl. Phys. Lett. 92, 193103 (2008). doi: 10.1063/1.2924315 |
[43] |
Aichele, T., Zwiller, V. & Benson, O. Visible single-photon generation from semiconductor quantum dots. N. J. Phys. 6, 90 (2004). doi: 10.1088/1367-2630/6/1/090 |
[44] |
Yang, J. Z. et al. Quantum dot-based broadband optical antenna for efficient extraction of single photons in the telecom O-band. Opt. Express 28, 19457–19468 (2020). doi: 10.1364/OE.395367 |
[45] |
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011). doi: 10.1038/nature10461 |
[46] |
Verhagen, E. et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012). doi: 10.1038/nature10787 |
[47] |
Zhang, J. et al. Laser cooling of a semiconductor by 40 kelvin. Nature 493, 504–508 (2013). doi: 10.1038/nature11721 |
[48] |
Zhang, J. et al. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nat. Photonics 10, 600–605 (2016). doi: 10.1038/nphoton.2016.122 |
[49] |
Ha, S. T. et al. Laser cooling of organic-inorganic lead halide perovskites. Nat. Photonics 10, 115–121 (2016). doi: 10.1038/nphoton.2015.243 |
[50] |
Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020). doi: 10.1126/science.aaz3985 |