[1] Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003). doi: 10.1038/nature01939
[2] Vollmer, F. & Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5, 591–596 (2008). doi: 10.1038/nmeth.1221
[3] Baaske, M. D., Foreman, M. R. & Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 9, 933–939 (2014). doi: 10.1038/nnano.2014.180
[4] Toropov, N. et al. Review of biosensing with whispering-gallery mode lasers. Light. : Sci. Appl. 10, 42 (2021). doi: 10.1038/s41377-021-00471-3
[5] Liu, Z. J. et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 123, 253901 (2019). doi: 10.1103/PhysRevLett.123.253901
[6] Liu, H. Z. et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat. Phys. 14, 1006–1010 (2018). doi: 10.1038/s41567-018-0233-6
[7] Gérard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998). doi: 10.1103/PhysRevLett.81.1110
[8] Liu, F. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018). doi: 10.1038/s41565-018-0188-x
[9] Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019). doi: 10.1038/s41565-019-0435-9
[10] Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019). doi: 10.1103/PhysRevLett.122.113602
[11] Takahashi, Y. et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498, 470–474 (2013). doi: 10.1038/nature12237
[12] Yu, M. J. et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light. : Sci. Appl. 9, 9 (2020). doi: 10.1038/s41377-020-0246-7
[13] Xue, X. X. et al. Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. Light. : Sci. Appl. 6, e16253 (2017). doi: 10.1038/lsa.2016.253
[14] Lu, X. Y. et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat. Photonics 13, 593–601 (2019). doi: 10.1038/s41566-019-0464-9
[15] Zhang, X. Y. et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics 13, 21–24 (2019). doi: 10.1038/s41566-018-0297-y
[16] Marty, G. et al. Photonic crystal optical parametric oscillator. Nat. Photonics 15, 53–58 (2021). doi: 10.1038/s41566-020-00737-z
[17] Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340–345 (2016). doi: 10.1038/nphoton.2016.23
[18] Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics 13, 770–775 (2019). doi: 10.1038/s41566-019-0494-3
[19] Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 6, 399–403 (2021). doi: 10.1038/s41565-020-00831-x
[20] Nomura, M. et al. Enhancement of light emission from single quantum dot in photonic crystal nanocavity by using cavity resonant excitation. Appl. Phys. Lett. 89, 241124 (2006). doi: 10.1063/1.2408636
[21] Kaniber, M. et al. Efficient and selective cavity-resonant excitation for single photon generation. N. J. Phys. 11, 013031 (2009). doi: 10.1088/1367-2630/11/1/013031
[22] Madsen, K. H. et al. Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity. Phys. Rev. B 90, 155303 (2014). doi: 10.1103/PhysRevB.90.155303
[23] Fang, L. & Wang, J. Intrinsic transverse spin angular momentum of fiber eigenmodes. Phys. Rev. A 95, 053827 (2017). doi: 10.1103/PhysRevA.95.053827
[24] Le Kien, F. et al. Higher-order modes of vacuum-clad ultrathin optical fibers. Phys. Rev. A 96, 023835 (2017). doi: 10.1103/PhysRevA.96.023835
[25] Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015). doi: 10.1103/RevModPhys.87.347
[26] Buckley, S., Rivoire, K. & Vučković, J. Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012). doi: 10.1088/0034-4885/75/12/126503
[27] Englund, D. et al. Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity. Phys. Rev. Lett. 104, 073904 (2010). doi: 10.1103/PhysRevLett.104.073904
[28] Quilter, J. H. et al. Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation. Phys. Rev. Lett. 114, 137401 (2015). doi: 10.1103/PhysRevLett.114.137401
[29] Reindl, M. et al. Highly indistinguishable single photons from incoherently excited quantum dots. Phys. Rev. B 100, 155420 (2019). doi: 10.1103/PhysRevB.100.155420
[30] Pooley, M. A. et al. Controlled-NOT gate operating with single photons. Appl. Phys. Lett. 100, 211103 (2012). doi: 10.1063/1.4719077
[31] Jones, A. M. et al. Excitonic luminescence upconversion in a two-dimensional semiconductor. Nat. Phys. 12, 323–327 (2016). doi: 10.1038/nphys3604
[32] Gérard, J. M. et al. Quantum boxes as active probes for photonic microstructures: the pillar microcavity case. Appl. Phys. Lett. 69, 449–451 (1996). doi: 10.1063/1.118135
[33] Reitzenstein, S. & Forchel, A. Quantum dot micropillars. J. Phys. D: Appl. Phys. 43, 033001 (2010). doi: 10.1088/0022-3727/43/3/033001
[34] Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016). doi: 10.1103/PhysRevLett.116.020401
[35] He, Y. M. et al. Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging. Optica 4, 802–808 (2017). doi: 10.1364/OPTICA.4.000802
[36] Su, R. L. et al. Bright and pure single-photons from quantum dots in micropillar cavities under up-converted excitation. Sci. Bull. 63, 739–742 (2018). doi: 10.1016/j.scib.2018.05.024
[37] Liu, S. F. et al. A deterministic quantum dot micropillar single photon source with > 65% extraction efficiency based on fluorescence imaging method. Sci. Rep. 7, 13986 (2017). doi: 10.1038/s41598-017-13433-w
[38] Liu, J. et al. Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters. Rev. Sci. Instrum. 88, 023116 (2017). doi: 10.1063/1.4976578
[39] Smolka, S. et al. Probing the statistical properties of Anderson localization with quantum emitters. N. J. Phys. 13, 063044 (2011). doi: 10.1088/1367-2630/13/6/063044
[40] Regelman, D. V. et al. Spectroscopy of positively and negatively charged quantum dots: wave function extent of holes and electrons. Phys. E: Low. -dimensional Syst. Nanostruct. 13, 114–118 (2002). doi: 10.1016/S1386-9477(01)00499-4
[41] Ediger, M. et al. Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots. Nat. Phys. 3, 774–779 (2007). doi: 10.1038/nphys748
[42] Dalgarno, P. A. et al. Hole recapture limited single photon generation from a single n-type charge-tunable quantum dot. Appl. Phys. Lett. 92, 193103 (2008). doi: 10.1063/1.2924315
[43] Aichele, T., Zwiller, V. & Benson, O. Visible single-photon generation from semiconductor quantum dots. N. J. Phys. 6, 90 (2004). doi: 10.1088/1367-2630/6/1/090
[44] Yang, J. Z. et al. Quantum dot-based broadband optical antenna for efficient extraction of single photons in the telecom O-band. Opt. Express 28, 19457–19468 (2020). doi: 10.1364/OE.395367
[45] Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011). doi: 10.1038/nature10461
[46] Verhagen, E. et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012). doi: 10.1038/nature10787
[47] Zhang, J. et al. Laser cooling of a semiconductor by 40 kelvin. Nature 493, 504–508 (2013). doi: 10.1038/nature11721
[48] Zhang, J. et al. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nat. Photonics 10, 600–605 (2016). doi: 10.1038/nphoton.2016.122
[49] Ha, S. T. et al. Laser cooling of organic-inorganic lead halide perovskites. Nat. Photonics 10, 115–121 (2016). doi: 10.1038/nphoton.2015.243
[50] Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020). doi: 10.1126/science.aaz3985