[1] Nam, D. et al. Flat panel light-field 3-D display: concept, design, rendering, and calibration. Proc. IEEE 105, 876–891 (2017). doi: 10.1109/JPROC.2017.2686445
[2] Wetzstein, G. et al. Compressive light field displays. IEEE Computer Graph. Appl. 32, 6–11 (2012). doi: 10.1109/MCG.2012.99
[3] Fattal, D. et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display. Nature 495, 348–351 (2013). doi: 10.1038/nature11972
[4] Yoon, H. et al. Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays. Nat. Commun. 2, 455 (2011). doi: 10.1038/ncomms1456
[5] Hong, K. et al. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality. Opt. Lett. 39, 127–130 (2014). doi: 10.1364/OL.39.000127
[6] Li, K. et al. Full resolution auto-stereoscopic mobile display based on large scale uniform switchable liquid crystal micro-lens array. Opt. Express 25, 9654–9675 (2017). doi: 10.1364/OE.25.009654
[7] Teng, D. D. et al. Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays. Opt. Express 23, 6007–6019 (2015). doi: 10.1364/OE.23.006007
[8] Ni, L. X. et al. 360-degree large-scale multiprojection light-field 3D display system. Appl. Opt. 57, 1817–1823 (2018). doi: 10.1364/AO.57.001817
[9] Lee, J. H. et al. Optimal projector configuration design for 300-Mpixel multi-projection 3D display. Opt. Express 21, 26820–26835 (2013). doi: 10.1364/OE.21.026820
[10] Takaki, Y. & Nago, N. Multi-projection of lenticular displays to construct a 256-view super multi-view display. Opt. Express 18, 8824–8835 (2010). doi: 10.1364/OE.18.008824
[11] Yang, S. W. et al. 162-inch 3D light field display based on aspheric lens array and holographic functional screen. Opt. Express 26, 33013–33021 (2018). doi: 10.1364/OE.26.033013
[12] Okaichi, N. et al. Integral 3D display using multiple LCD panels and multi-image combining optical system. Opt. Express 25, 2805–2817 (2017). doi: 10.1364/OE.25.002805
[13] Liao, H. E. Super long viewing distance light homogeneous emitting three-dimensional display. Sci. Rep. 5, 9532 (2015). doi: 10.1038/srep09532
[14] Krebs, P. et al. Homogeneous free-form directional backlight for 3D display. Opt. Commun. 397, 112–117 (2017). doi: 10.1016/j.optcom.2017.04.002
[15] Wan, W. Q. et al. Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD. Opt. Express 25, 1114–1122 (2017). doi: 10.1364/OE.25.001114
[16] Zhou, F. et al. Pixelated blazed gratings for high brightness multiview holographic 3D display. IEEE Photonics Technol. Lett. 32, 283–286 (2020). doi: 10.1109/LPT.2020.2971147
[17] Watanabe, H. et al. Pixel-density and viewing-angle enhanced integral 3D display with parallel projection of multiple UHD elemental images. Opt. Express 28, 24731–24746 (2020). doi: 10.1364/OE.397647
[18] Zhao, Z. F. et al. Bionic-compound-eye structure for realizing a compact integral imaging 3D display in a cell phone with enhanced performance. Opt. Lett. 45, 1491–1494 (2020). doi: 10.1364/OL.384182
[19] Lee, S. et al. Tomographic near-eye displays. Nat. Commun. 10, 2497 (2019). doi: 10.1038/s41467-019-10451-2
[20] Ting, C. H. et al. Multi-user 3D film on a time-multiplexed side-emission backlight system. Appl. Opt. 55, 7922–7928 (2016). doi: 10.1364/AO.55.007922
[21] Hwang, Y. S. et al. Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements. Opt. Express 22, 9820–9838 (2014). doi: 10.1364/OE.22.009820
[22] Yang, L. et al. Viewing-angle and viewing-resolution enhanced integral imaging based on time-multiplexed lens stitching. Opt. Express 27, 15679–15692 (2019). doi: 10.1364/OE.27.015679
[23] Xia, X. X. et al. Time-multiplexed multi-view three-dimensional display with projector array and steering screen. Opt. Express 26, 15528–15538 (2018). doi: 10.1364/OE.26.015528
[24] Fan, H. et al. Full resolution, low crosstalk, and wide viewing angle auto-stereoscopic display with a hybrid spatial-temporal control using free-form surface backlight unit. J. Disp. Technol. 11, 620–624 (2015). doi: 10.1109/JDT.2015.2425432
[25] Liu, B. Y. et al. Time-multiplexed light field display with 120-degree wide viewing angle. Opt. Express 27, 35728–35739 (2019). doi: 10.1364/OE.27.035728
[26] An, J. et al. Slim-panel holographic video display. Nat. Commun. 11, 5568 (2020). doi: 10.1038/s41467-020-19298-4
[27] Phillips, D. B. et al. Adaptive foveated single-pixel imaging with dynamic supersampling. Sci. Adv. 3, e1601782 (2017). doi: 10.1126/sciadv.1601782
[28] Cem, A. et al. Foveated near-eye display using computational holography. Sci. Rep. 10, 14905 (2020). doi: 10.1038/s41598-020-71986-9
[29] Yoo, C. et al. Foveated display system based on a doublet geometric phase lens. Opt. Express 28, 23690–23702 (2020). doi: 10.1364/OE.399808
[30] Chang, C. L., Cui, W. & Gao, L. Foveated holographic near-eye 3D display. Opt. Express 28, 1345–1356 (2020). doi: 10.1364/OE.384421
[31] Lv, G. J. et al. Autostereoscopic 3D display with high brightness and low crosstalk. Appl. Opt. 56, 2792–2795 (2017). doi: 10.1364/AO.56.002792
[32] Song, M. H. et al. Integral imaging system using an adaptive lens array. Appl. Opt. 55, 6399–6403 (2016). doi: 10.1364/AO.55.006399
[33] Yang, L. et al. Demonstration of a large-size horizontal light-field display based on the LED panel and the micro-pinhole unit array. Opt. Commun. 414, 140–145 (2018). doi: 10.1016/j.optcom.2017.12.069
[34] Chen, Z. G. & Segev, M. Highlighting photonics: looking into the next decade. eLight 1, 2 (2021). doi: 10.1186/s43593-021-00002-y
[35] Xiong, J. H. & Wu, S. T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021). doi: 10.1186/s43593-021-00003-x
[36] Huang, K. et al. Planar diffractive lenses: fundamentals, functionalities, and applications. Adv. Mater. 30, 1704556 (2018). doi: 10.1002/adma.201704556
[37] Banerji, S. et al. Imaging with flat optics: metalenses or diffractive lenses? Optica 6, 805–810 (2019). doi: 10.1364/OPTICA.6.000805
[38] Ni, Y. B. et al. Metasurface for structured light projection over 120° field of view. Nano Lett. 20, 6719–6724 (2020). doi: 10.1021/acs.nanolett.0c02586
[39] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013). doi: 10.1038/ncomms3808
[40] Hu, Y. Q. et al. 3D-Integrated metasurfaces for full-colour holography. Light. Sci. Appl. 8, 86 (2019). doi: 10.1038/s41377-019-0198-y
[41] Hu, Y. Q. et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface. Nano Lett. 20, 994–1002 (2020). doi: 10.1021/acs.nanolett.9b04107
[42] Li, J. X. et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display. ACS Nano 14, 7892–7898 (2020). doi: 10.1021/acsnano.0c01469
[43] Wan, W. Q. et al. Holographic sampling display based on metagratings. iScience 23, 100773 (2020). doi: 10.1016/j.isci.2019.100773
[44] Shi, J. C. et al. Spatial multiplexing holographic combiner for glasses-free augmented reality. Nanophotonics 9, 3003–3010 (2020). doi: 10.1515/nanoph-2020-0243
[45] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).
[46] Chen, Y. F. Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. 135, 57–72 (2015). doi: 10.1016/j.mee.2015.02.042
[47] Zeitner, U. D. et al. High performance diffraction gratings made by e-beam lithography. Appl. Phys. A 109, 789–796 (2012). doi: 10.1007/s00339-012-7346-z
[48] Manfrinato, V. R. et al. Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett. 13, 1555–1558 (2013). doi: 10.1021/nl304715p
[49] Manfrinato, V. R. et al. Determining the resolution limits of electron-beam lithography: direct measurement of the point-spread function. Nano Lett. 14, 4406–4412 (2014). doi: 10.1021/nl5013773
[50] Qiao, W. et al. Toward scalable flexible nanomanufacturing for photonic structures and devices. Adv. Mater. 28, 10353–10380 (2016). doi: 10.1002/adma.201601801
[51] Wan, W. Q. et al. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views. Opt. Express 24, 6203–6212 (2016). doi: 10.1364/OE.24.006203