[1] Boyd, R. W. Nonlinear Optics. 3rd edn (Academic Press, Inc., Waltham, 2008).
[2] He, G. S. & Liu, S. H. Physics of Nonlinear Optics (World Scientific Co., Singapore, 1999).
[3] Autere, A. et al. Nonlinear optics with 2D layered materials. Adv. Mater. 30, 1705963 (2018). doi: 10.1002/adma.201705963
[4] Yamashita, S. Nonlinear optics in carbon nanotube, graphene, and related 2D materials. APL Photonics 4, 034301 (2019). doi: 10.1063/1.5051796
[5] Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004). doi: 10.1126/science.1102896
[6] Cheng, J. L., Vermeulen, N. & Sipe, J. E. Third order optical nonlinearity of graphene. N. J. Phys. 16, 053014 (2014). doi: 10.1088/1367-2630/16/5/053014
[7] Hong, S. Y. et al. Optical third-harmonic generation in graphene. Phys. Rev. X 3, 021014 (2013).
[8] Säynätjoki, A. et al. Rapid large-area multiphoton microscopy for characterization of graphene. ACS Nano 7, 8441-8446 (2013). doi: 10.1021/nn4042909
[9] Kumar, N. et al. Third harmonic generation in graphene and few-layer graphite films. Phys. Rev. B 87, 121406(R) (2013). doi: 10.1103/PhysRevB.87.121406
[10] Yang, H. et al. Layer dependence of third-harmonic generation in thick multilayer graphene. Phys. Rev. Mater. 2, 071002(R) (2018). doi: 10.1103/PhysRevMaterials.2.071002
[11] Jiang, T. et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nat. Photonics 12, 430-436 (2018). doi: 10.1038/s41566-018-0175-7
[12] Soavi, G. et al. Broadband, electrically tunable third-harmonic generation in graphene. Nat. Nanotechnol. 13, 583-588 (2018). doi: 10.1038/s41565-018-0145-8
[13] Hendry, E. et al. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010). doi: 10.1103/PhysRevLett.105.097401
[14] Gu, T. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics 6, 554-559 (2012). doi: 10.1038/nphoton.2012.147
[15] Bao, Q. L. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077-3083 (2009). doi: 10.1002/adfm.200901007
[16] Park, N. H. et al. Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking. Opt. Express 23, 19806-19812 (2015). doi: 10.1364/OE.23.019806
[17] Lee, E. J. et al. Active control of all-fibre graphene devices with electrical gating. Nat. Commun. 6, 6851 (2015). doi: 10.1038/ncomms7851
[18] Li, G. H. et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109-113 (2010). doi: 10.1038/nphys1463
[19] Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43-50 (2018). doi: 10.1038/nature26160
[20] Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448-453 (2019). doi: 10.1038/s41563-019-0346-z
[21] Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80-84 (2018). doi: 10.1038/nature26154
[22] Shi, H. H. et al. Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat. Commun. 11, 371 (2020). doi: 10.1038/s41467-019-14207-w
[23] Patel, H. et al. Stacking angle-tunable photoluminescence from interlayer exciton states in twisted bilayer graphene. Nat. Commun. 10, 1445 (2019). doi: 10.1038/s41467-019-09097-x
[24] Moon, P. & Koshino, M. Optical absorption in twisted bilayer graphene. Phys. Rev. B 87, 205404 (2013). doi: 10.1103/PhysRevB.87.205404
[25] Wang, Y. Y. et al. Stacking-dependent optical conductivity of bilayer graphene. ACS Nano 4, 4074-4080 (2010). doi: 10.1021/nn1004974
[26] Havener, R. W. et al. Hyperspectral imaging of structure and composition in atomically thin heterostructures. Nano Lett. 13, 3942-3946 (2013). doi: 10.1021/nl402062j
[27] Havener, R. W. et al. Van hove singularities and excitonic effects in the optical conductivity of twisted bilayer graphene. Nano Lett. 14, 3353-3357 (2014). doi: 10.1021/nl500823k
[28] Yin, J. B. et al. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat. Commun. 7, 10699 (2016). doi: 10.1038/ncomms10699
[29] Havener, R. W. et al. Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett. 12, 3162-3167 (2012). doi: 10.1021/nl301137k
[30] Kim, K. et al. Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012). doi: 10.1103/PhysRevLett.108.246103
[31] Jorio, A. & Cançado, L. G. Raman spectroscopy of twisted bilayer graphene. Solid State Commun. 175-176, 3-12 (2013).
[32] Campos‐Delgado, J. et al. Twisted bi-layer graphene: microscopic rainbows. Small 9, 3247-3251 (2013).
[33] Robinson, J. T. et al. Electronic hybridization of large-area stacked graphene films. ACS Nano 7, 637-644 (2013). doi: 10.1021/nn304834p
[34] Yeh, C. H. et al. Gating electron-hole asymmetry in twisted bilayer graphene. ACS Nano 8, 6962-6969 (2014). doi: 10.1021/nn501775h
[35] Lui, C. H. et al. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010). doi: 10.1103/PhysRevLett.105.127404
[36] Liu, W. T. et al. Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation. Phys. Rev. B 82, 081408(R) (2010). doi: 10.1103/PhysRevB.82.081408
[37] Alencar, T. V. et al. Twisted bilayer graphene photoluminescence emission peaks at van Hove singularities. J. Phys. : Condens. Matter 30, 175302 (2018). doi: 10.1088/1361-648X/aab64b
[38] Huang, D. et al. Gate switching of ultrafast photoluminescence in graphene. Nano Lett. 18, 7985-7990 (2018). doi: 10.1021/acs.nanolett.8b03967
[39] Chung, T. F. et al. Optical phonons in twisted bilayer graphene with gate-induced asymmetric doping. Nano Lett. 15, 1203-1210 (2015). doi: 10.1021/nl504318a
[40] Yu, K. et al. Gate tunable optical absorption and band structure of twisted bilayer graphene. Phys. Rev. B 99, 241405(R) (2019). doi: 10.1103/PhysRevB.99.241405
[41] Säynätjoki, A. et al. Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers. Nat. Commun. 8, 893 (2017). doi: 10.1038/s41467-017-00749-4
[42] Yang, F. Y. et al. Tunable second harmonic generation in twisted bilayer graphene. Matter 3, 1361-1376 (2020). doi: 10.1016/j.matt.2020.08.018
[43] Du, L. J., Dai, Y. Y. & Sun, Z. P. Twisting for tunable nonlinear optics. Matter 3, 987-988 (2020). doi: 10.1016/j.matt.2020.09.013
[44] Chebrolu, N. R., Chittari, B. L. & Jung, J. Flat bands in twisted double bilayer graphene. Phys. Rev. B 99, 235417 (2019). doi: 10.1103/PhysRevB.99.235417
[45] Stauber, T., San-Jose, P. & Brey, L. Optical conductivity, Drude weight and plasmons in twisted graphene bilayers. N. J. Phys. 15, 113050 (2013). doi: 10.1088/1367-2630/15/11/113050