[1] Yue, S., Slipchenko, M. N. & Cheng, J. X. Multimodal nonlinear optical microscopy. Laser Photonics Rev. 5, 496-512 (2011). doi: 10.1002/lpor.201000027
[2] Krafft, C. et al. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chem. Soc. Rev. 45, 1819-1849 (2016). doi: 10.1039/C5CS00564G
[3] Krafft, C. et al. Label-free molecular imaging of biological cells and tissues by linear and nonlinear raman spectroscopic approaches. Angew. Chem. Int. Ed. 56, 4392-4430 (2017). doi: 10.1002/anie.201607604
[4] Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-dimensional vibrational imaging by coherent anti-stokes raman scattering. Phys. Rev. Lett. 82, 4142-4145 (1999). doi: 10.1103/PhysRevLett.82.4142
[5] Légaré, F. et al. Towards CARS endoscopy. Opt. Express 14, 4427-4432 (2006). doi: 10.1364/OE.14.004427
[6] Zirak, P. et al. Invited Article: a rigid coherent anti-Stokes Raman scattering endoscope with high resolution and a large field of view. APL Photonics 3, 092409 (2018). doi: 10.1063/1.5027182
[7] Lukic, A. et al. Endoscopic fiber probe for nonlinear spectroscopic imaging. Optica 4, 496-501 (2017). doi: 10.1364/OPTICA.4.000496
[8] Murugkar, S. et al. Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source. Opt. Express 18, 23796-23804 (2010). doi: 10.1364/OE.18.023796
[9] Brown, C. M. et al. Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope. Optical Eng. 45, 043001 (2006). doi: 10.1117/1.2188387
[10] Saar, B. G. et al. Coherent Raman scanning fiber endoscopy. Opt. Lett. 36, 2396-2398 (2011). doi: 10.1364/OL.36.002396
[11] Lombardini, A. et al. High-resolution multimodal flexible coherent Raman endoscope. Light. : Sci. Appl. 7, 10 (2018). doi: 10.1038/s41377-018-0003-3
[12] Trägårdh, J. et al. Label-free CARS microscopy through a multimode fiber endoscope. Opt. Express 27, 30055-30066 (2019). doi: 10.1364/OE.27.030055
[13] Gottschall, T. et al. Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy. Laser Photonics Rev. 9, 435-451, https://doi.org/10.1002/lpor.201500023 (2015).
[14] Liang, W. X. et al. Nonlinear optical endomicroscopy for label-free functional histology in vivo. Light. : Sci. Appl. 6, e17082 (2017). doi: 10.1038/lsa.2017.82
[15] Balu, M. et al. Fiber delivered probe for efficient CARS imaging of tissues. Opt. Express 18, 2380-2388 (2010). doi: 10.1364/OE.18.002380
[16] Jun, C. S. et al. Investigation of a four-wave mixing signal generated in fiber-delivered CARS microscopy. Appl. Opt. 49, 3916-3921 (2010). doi: 10.1364/AO.49.003916
[17] Deladurantaye, P. et al. Advances in engineering of high contrast CARS imaging endoscopes. Opt. Express 22, 25053-25064 (2014). doi: 10.1364/OE.22.025053
[18] Wang, K. & Xu, C. Fiber-delivered picosecond source for coherent Raman scattering imaging. Opt. Lett. 36, 4233-4235 (2011). doi: 10.1364/OL.36.004233
[19] Brustlein, S. et al. Double-clad hollow core photonic crystal fiber for coherent Raman endoscope. Opt. Express 19, 12562-12568 (2011). doi: 10.1364/OE.19.012562
[20] Andreana, M. et al. Ultrashort pulse Kagome hollow-core photonic crystal fiber delivery for nonlinear optical imaging. Opt. Lett. 44, 1588-1591 (2019). doi: 10.1364/OL.44.001588
[21] Subramanian, K. et al. Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies. Biomed. Opt. Express 7, 4639-4653 (2016). doi: 10.1364/BOE.7.004639
[22] Wang, Y. Y. et al. Hollow-core photonic crystal fibre for high power laser beam delivery. High. Power Laser Sci. Eng. 1, 17-28 (2013). doi: 10.1017/hpl.2013.3
[23] Poletti, F., Petrovich, M. N. & Richardson, D. J. Hollow-core photonic bandgap fibers: technology and applications. Nanophotonics 2, 315-340 (2013). doi: 10.1515/nanoph-2013-0042
[24] Kudlinski, A. et al. Double clad tubular anti-resonant hollow core fiber for nonlinear microendoscopy. Opt. Express 28, 15062-15070 (2020). doi: 10.1364/OE.389084
[25] Seibel, E. J. & Smithwick, Q. Y. J. Unique features of optical scanning, single fiber endoscopy. Lasers Surg. Med. 30, 177-183 (2002). doi: 10.1002/lsm.10029
[26] Knittel, J. et al. Endoscope-compatible confocal microscope using a gradient index-lens system. Opt. Commun. 188, 267-273 (2001). doi: 10.1016/S0030-4018(00)01164-0
[27] Barretto, R. P. J., Messerschmidt, B. & Schnitzer, M. J. In vivo fluorescence imaging with high-resolution microlenses. Nat. Methods 6, 511-512 (2009). doi: 10.1038/nmeth.1339
[28] Baumgartl, M. et al. All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion. Opt. Express 20, 4484-4493 (2012). doi: 10.1364/OE.20.004484
[29] Yu, Y., Ramachandran, P. V. & Wang, M. C. Shedding new light on lipid functions with CARS and SRS microscopy. Biochimica et. Biophysica Acta (BBA)-Mol. Cell Biol. Lipids 1841, 1120-1129 (2014). doi: 10.1016/j.bbalip.2014.02.003
[30] Evans, C. L. & Xie, X. S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 1, 883-909 (2008). doi: 10.1146/annurev.anchem.1.031207.112754
[31] Schuster, K. et al. Material and technology trends in fiber optics. Adv. Optical Technol. 3, 447-468 (2014). doi: 10.1515/aot-2014-0010
[32] Meinert, T. et al. Varifocal MOEMS fiber scanner for confocal endomicroscopy. Opt. Express 22, 31529-31544 (2014). doi: 10.1364/OE.22.031529
[33] Ducourthial, G. et al. Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal. Sci. Rep. 5, 18303 (2015). doi: 10.1038/srep18303
[34] Buralli, D. A. et al. Optical performance of holographic kinoforms. Appl. Opt. 28, 976-983 (1989). doi: 10.1364/AO.28.000976
[35] Brochado, A. R. et al. Species-specific activity of antibacterial drug combinations. Nature 559, 259-263 (2018). doi: 10.1038/s41586-018-0278-9
[36] Glavis-Bloom, J. et al. Recent Advances on Model Hosts, vol. 710 Advances in Experimental Medicine and Biolgy Springer (New York: Springer, 2012), 11-17.
[37] Rivera, D. R. et al. Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue. Proc. Natl Acad. Sci. USA 108, 17598-17603 (2011). doi: 10.1073/pnas.1114746108
[38] Heuke, S. et al. Detection and discrimination of non-melanoma skin cancer by multimodal imaging. Healthcare 1, 64-83 (2013). doi: 10.3390/healthcare1010064