[1] Blum, M. et al. Compact optical design solutions using focus tunable lenses. In Proceedings of SPIE 8167, Optical Design and Engineering IV (SPIE, Marseille, France, 2011).
[2] Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012). doi: 10.1021/nl302516v
[3] Cao, G. Y. et al. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments. ACS Appl. Mater. Interfaces 11, 20298–20303 (2019). doi: 10.1021/acsami.9b05109
[4] Deng, Z. L. et al. Facile metagrating holograms with broadband and extreme angle tolerance. Light. Sci. Appl. 7, 78 (2018). doi: 10.1038/s41377-018-0075-0
[5] Fattal, D. et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display. Nature 495, 348–351 (2013). doi: 10.1038/nature11972
[6] Kong, X. T. et al. Graphene-based ultrathin flat lenses. ACS Photonics 2, 200–207 (2015). doi: 10.1021/ph500197j
[7] Zheng, X. R. et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun. 6, 8433 (2015). doi: 10.1038/ncomms9433
[8] Xia, F. N. et al. Two-dimensional material nanophotonics. Nat. Photonics 8, 899–907 (2014). doi: 10.1038/nphoton.2014.271
[9] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139 (2014). doi: 10.1038/nmat3839
[10] Aničin, B. A., Babović, V. M. & Davidović, D. M. Fresnel lenses. Am. J. Phys. 57, 312–316 (1989).
[11] Rogers, E. T. F. et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012). doi: 10.1038/nmat3280
[12] Smith, H. I. A proposal for maskless, zone‐plate‐array nanolithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 14, 4318–4322 (1996). doi: 10.1116/1.589044
[13] Menon, R. et al. Maskless lithography. Mater. Today 8, 26–33 (2005). doi: 10.1016/S1369-7021(05)00699-1
[14] Fu, Y. Q. et al. Near-field behavior of zone-plate-like plasmonic nanostructures. J. Optical Soc. Am. A 25, 238–249 (2008). doi: 10.1364/JOSAA.25.000238
[15] Kim, H. C., Ko, H. & Cheng, M. S. High efficient optical focusing of a zone plate composed of metal/dielectric multilayer. Opt. Express 17, 3078–3083 (2009). doi: 10.1364/OE.17.003078
[16] Hristov, H. D. & Herben, M. H. A. J. Millimeter-wave Fresnel-zone plate lens and antenna. IEEE Trans. Microw. Theory Tech. 43, 2779–2785 (1995). doi: 10.1109/22.475635
[17] Hristov, H. D. Fresnal Zones in Wireless Links, Zone Plate Lenses and Antennas (Artech House, Inc., Norwood, MA, 2000).
[18] Di Fabrizio, E. et al. High-efficiency multilevel zone plates for keV X-rays. Nature 401, 895–898 (1999). doi: 10.1038/44791
[19] Quiney, H. M. et al. Diffractive imaging of highly focused X-ray fields. Nat. Phys. 2, 101–104 (2006). doi: 10.1038/nphys218
[20] Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011). doi: 10.1038/nnano.2011.146
[21] Rodrigo, D. et al. Double-layer graphene for enhanced tunable infrared plasmonics. Light.Sci. Appl. 6, e16277 (2017). doi: 10.1038/lsa.2016.277
[22] Zhu, S. E., Yuan, S. J. & Janssen, G. C. A. M. Optical transmittance of multilayer graphene. EPL (Europhys. Lett.) 108, 17007 (2014). doi: 10.1209/0295-5075/108/17007
[23] Min, H. & MacDonald, A. H. Origin of universal optical conductivity and optical stacking sequence identification in multilayer graphene. Phys. Rev. Lett. 103, 067402 (2009). doi: 10.1103/PhysRevLett.103.067402
[24] Horng, J. et al. Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 83, 165113 (2011). doi: 10.1103/PhysRevB.83.165113
[25] Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008). doi: 10.1126/science.1152793
[26] Fang, Y. R. & Sun, M. T. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light. Sci. Appl. 4, e294 (2015). doi: 10.1038/lsa.2015.67
[27] Bao, Q. L. et al. Broadband graphene polarizer. Nat. Photonics 5, 411–415 (2011). doi: 10.1038/nphoton.2011.102
[28] Lu, H. et al. Graphene-based active slow surface plasmon polaritons. Sci. Rep. 5, 8443 (2015). doi: 10.1038/srep08443
[29] Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011). doi: 10.1038/nature10067
[30] Mueller, T., Xia, F. N. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010). doi: 10.1038/nphoton.2010.40
[31] Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4, 532–535 (2008). doi: 10.1038/nphys989
[32] Son, Y. W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006). doi: 10.1038/nature05180
[33] Park, D. et al. Lenticular stereoscopic imaging and displaying techniques with no special glasses. In Proceedings of 1995 International Conference on Image Processing (IEEE, Washington, DC, 1995).
[34] Woodgate, G. J. et al. Flat-panel autostereoscopic displays: characterization and enhancement. In Proceedings of SPIE 3957, Stereoscopic Displays and Virtual Reality Systems VII (SPIE, San Jose, CA, 2000).
[35] Krasheninnikov, A. V. & Banhart, F. Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 6, 723–733 (2007). doi: 10.1038/nmat1996
[36] Dodgson, N. A. Autostereoscopic 3D displays. Computer 38, 31–36 (2005). doi: 10.1109/MC.2005.252
[37] Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). doi: 10.1126/science.1102896
[38] Gusynin, V. P. & Sharapov, S. G. Transport of Dirac quasiparticles in graphene: hall and optical conductivities. Phys. Rev. B 73, 245411 (2006). doi: 10.1103/PhysRevB.73.245411
[39] Stauber, T., Peres, N. M. R. & Geim, A. K. Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432 (2008). doi: 10.1103/PhysRevB.78.085432
[40] Gusynin, V. P., Sharapov, S. G. & Carbotte, J. P. Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19, 026222 (2006). doi: 10.1088/0953-8984/19/2/026222
[41] Hecht, E. Optics, 5th edn. (Pearson, 2016).
[42] Sensale-Rodriguez, B. et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 780 (2012). doi: 10.1038/ncomms1787
[43] Zhang, Y. B. et al. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 5, 722–726 (2009). doi: 10.1038/nphys1365
[44] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013). doi: 10.1038/ncomms3808
[45] Assouar, B. et al. Acoustic metasurfaces. Nat. Rev. Mater. 3, 460–472 (2018). doi: 10.1038/s41578-018-0061-4
[46] Neshev, D. & Aharonovich, I. Optical metasurfaces: new generation building blocks for multi-functional optics. Light. Sci. Appl. 7, 58 (2018). doi: 10.1038/s41377-018-0058-1
[47] Avayu, O. et al. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017). doi: 10.1038/ncomms14992