[1] |
Gong, Y. Y. et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350, 1361–1366 (2015). doi: 10.1126/science.aab0810 |
[2] |
Botcherby, E. J. et al. Aberration-free optical refocusing in high numerical aperture microscopy. Opt. Lett. 32, 2007–2009 (2007). doi: 10.1364/OL.32.002007 |
[3] |
Botcherby, E. J. et al. Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates. Proc. Natl Acad. Sci. USA 109, 2919–2924 (2012). doi: 10.1073/pnas.1111662109 |
[4] |
Mermillod-Blondin, A., McLeod, E. & Arnold, C. B. High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens. Opt. Lett. 33, 2146–2148 (2008). doi: 10.1364/OL.33.002146 |
[5] |
Duocastella, M., Sun, B. & Arnold, C. B. Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics. J. Biomed. Opt. 17, 050505 (2012). doi: 10.1117/1.JBO.17.5.050505 |
[6] |
Berge, B. & Peseux, J. Variable focal lens controlled by an external voltage: an application of electrowetting. Eur. Phys. J. E 3, 159–163 (2000). doi: 10.1007/s101890070029 |
[7] |
Žurauskas, M. et al. Rapid adaptive remote focusing microscope for sensing of volumetric neural activity. Biomed. Opt. Express 8, 4369–4379 (2017). doi: 10.1364/BOE.8.004369 |
[8] |
Fahrbach, F. O. et al. Rapid 3D light-sheet microscopy with a tunable lens. Opt. Express 21, 21010–21026 (2013). doi: 10.1364/OE.21.021010 |
[9] |
Ozbay, B. N. et al. Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts. Opt. Lett. 40, 2553–2556 (2015). doi: 10.1364/OL.40.002553 |
[10] |
Stirman, J. N. et al. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat. Biotechnol. 34, 857–862 (2016). doi: 10.1038/nbt.3594 |
[11] |
Cheng, A. et al. Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat. Methods 8, 139–142 (2011). doi: 10.1038/nmeth.1552 |
[12] |
Han, S. T., Yang, W. J. & Yuste, R. Two-color volumetric imaging of neuronal activity of cortical columns. Cell Rep. 27, 2229–2240.e4 (2019). doi: 10.1016/j.celrep.2019.04.075 |
[13] |
Weisenburger, S. et al. Volumetric Ca2+ imaging in the mouse brain using hybrid multiplexed sculpted light microscopy. Cell 177, 1050–1066.e14 (2019). doi: 10.1016/j.cell.2019.03.011 |
[14] |
Beaulieu, D. R. et al. Simultaneous multiplane imaging with reverberation two-photon microscopy. Nat. Methods 17, 283–286 (2020). doi: 10.1038/s41592-019-0728-9 |
[15] |
Lu, R. W. et al. Video-rate volumetric functional imaging of the brain at synaptic resolution. Nat. Neurosci. 20, 620–628 (2017). doi: 10.1038/nn.4516 |
[16] |
Song, A. et al. Volumetric two-photon imaging of neurons using stereoscopy (vTwINS). Nat. Methods 14, 420–426 (2017). doi: 10.1038/nmeth.4226 |
[17] |
Wu, J. L. et al. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nat. Methods 17, 287–290 (2020). doi: 10.1038/s41592-020-0762-7 |
[18] |
Schneider, J. et al. Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nat. Methods 12, 827–830 (2015). doi: 10.1038/nmeth.3481 |
[19] |
Salomé, R. et al. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J. Neurosci. Methods 154, 161–174 (2006). doi: 10.1016/j.jneumeth.2005.12.010 |
[20] |
Chakraborty, T. et al. Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution. Nat. Methods 16, 1109–1113 (2019). doi: 10.1038/s41592-019-0615-4 |
[21] |
Dean, K. M. et al. Deconvolution-free subcellular imaging with axially swept light sheet microscopy. Biophysical J. 108, 2807–2815 (2015). doi: 10.1016/j.bpj.2015.05.013 |
[22] |
Delarue, M. et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 174, 338–349.e20 (2018). doi: 10.1016/j.cell.2018.05.042 |
[23] |
Nguyen, C. T. et al. Zebrafish as a model for cardiovascular development and disease. Drug Discov. Today 5, 135–140 (2008). http://www.sciencedirect.com/science/article/pii/S1740675709000097 |
[24] |
Weber, M. & Huisken, J. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy. Swiss Med. Wkly. 145, w14227 (2015). |
[25] |
Jin, S. W. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132, 5199–5209 (2005). doi: 10.1242/dev.02087 |
[26] |
Voigt, F. F. et al. The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nat. Methods 16, 1105–1108 (2019). doi: 10.1038/s41592-019-0554-0 |
[27] |
Kim, D. Y. et al. Lissajous scanning two-photon endomicroscope for in vivo tissue imaging. Sci. Rep. 9, 3560 (2019). doi: 10.1038/s41598-019-38762-w |
[28] |
Challa, P. K. et al. Microfluidic devices fabricated using fast wafer-scale LED-lithography patterning. Biomicrofluidics 11, 014113 (2017). doi: 10.1063/1.4976690 |
[29] |
Gan, Z. et al. Vimentin intermediate filaments template microtubule networks to enhance persistence in cell polarity and directed migration. Cell Syst. 3, 252–263.e8 (2016). doi: 10.1016/j.cels.2016.08.007 |
[30] |
Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008). doi: 10.1038/nmeth.1237 |