[1] Liu, P. Y. et al. Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab. Chip. 16, 634–644 (2016).
[2] Chen, X. & Korotkova, O. Optical beam propagation in soft anisotropic biological tissues. OSA Contin. 1, 1055–1067 (2018). doi: 10.1364/OSAC.1.001055
[3] Chen, X., Li, J. & Korotkova, O. Light scintillation in soft biological tissues. Waves Random Complex Media 30, 481–489 (2020). doi: 10.1080/17455030.2018.1530814
[4] Zhu, R. Y. et al. Correlation-induced spectral changes in tissues. Opt. Lett. 36, 4209–4211 (2011). doi: 10.1364/OL.36.004209
[5] Takabayashi, M. et al. Disorder strength measured by quantitative phase imaging as intrinsic cancer marker in fixed tissue biopsies. PLoS ONE 13, e0194320 (2018). doi: 10.1371/journal.pone.0194320
[6] Dunn, G. A. & Zicha, D. Dynamics of fibroblast spreading. J. Cell Sci. 108, 1239–1249 (1995). http://www.ncbi.nlm.nih.gov/pubmed/7622607
[7] Gerber, S. A. et al. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA 100, 6940–6945 (2003). doi: 10.1073/pnas.0832254100
[8] Barer, R. Interference microscopy and mass determination. Nature 169, 366–367 (1952). doi: 10.1038/169541a0
[9] Davies, H. G. & Wilkins, M. H. F. Interference microscopy and mass determination. Nature 169, 541 (1952). doi: 10.1038/169541a0
[10] Wang, Z. et al. Tissue refractive index as marker of disease. J. Biomed. Opt. 16, 116017 (2011). doi: 10.1117/1.3656732
[11] Giannios, P. et al. Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared. J. Biophotonics 10, 303–310 (2017). doi: 10.1002/jbio.201600001
[12] Subramanian, H. et al. Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis. Opt. Lett. 34, 518–520 (2009). doi: 10.1364/OL.34.000518
[13] Uttam, S. et al. Early prediction of cancer progression by depth-resolved nanoscale mapping of nuclear architecture from unstained tissue specimens. Cancer Res. 75, 4718–4727 (2015). doi: 10.1158/0008-5472.CAN-15-1274
[14] Park, Y. et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl Acad. Sci. USA 105, 13730–13735 (2018). http://www.pnas.org/content/105/37/13730.abstract
[15] Bista, R. K. et al. Quantification of nanoscale nuclear refractive index changes during the cell cycle. J. Biomed. Opt. 16, 070503 (2011). doi: 10.1117/1.3597723
[16] Yanina, I. Y., Lazareva, E. N. & Tuchin, V. V. Refractive index of adipose tissue and lipid droplet measured in wide spectral and temperature ranges. Appl. Opt. 57, 4839–4848 (2018). doi: 10.1364/AO.57.004839
[17] Kim, D. et al. Holotomography: refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging. Preprint at https://doi.org/10.1101/106328 (2018).
[18] Popescu, G. Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Education, New York, 2011).
[19] Schürmann, M. et al. Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography. J. Biophotonics 11, e201700145 (2018). doi: 10.1002/jbio.201700145
[20] Zhang, Q. N. et al. Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging. Sci. Rep. 7, 2532 (2017). doi: 10.1038/s41598-017-02797-8
[21] Park, Y. K., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018). doi: 10.1038/s41566-018-0253-x
[22] Depeursinge, A. et al. Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med. Image Anal. 18, 176–196 (2014). doi: 10.1016/j.media.2013.10.005
[23] Merola, F. et al. Tomographic flow cytometry by digital holography. Light.: Sci. Appl. 6, e16241 (2017). doi: 10.1038/lsa.2016.241
[24] Robles, F. E. et al. Molecular imaging true-colour spectroscopic optical coherence tomography. Nat. Photonics 5, 744–747 (2011). doi: 10.1038/nphoton.2011.257
[25] Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007). doi: 10.1038/nmeth1078
[26] Cotte, Y. et al. Marker-free phase nanoscopy. Nat. Photonics 7, 113–117 (2013). doi: 10.1038/nphoton.2012.329
[27] Lee, K. R. & Park, Y. K. Quantitative phase imaging unit. Opt. Lett. 39, 3630–3633 (2014). doi: 10.1364/OL.39.003630
[28] Wang, Z. et al. Spatial light interference microscopy (SLIM). Opt. Express 19, 1016–1026 (2011). doi: 10.1364/OE.19.001016
[29] Nguyen, T. H. et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8, 210 (2017). doi: 10.1038/s41467-017-00190-7
[30] Bhaduri, B. et al. Diffraction phase microscopy with white light. Opt. Lett. 37, 1094–1096 (2012). doi: 10.1364/OL.37.001094
[31] Kuś, A. et al. Tomographic phase microscopy of living three-dimensional cell cultures. J. Biomed. Opt. 19, 046009 (2014). http://europepmc.org/abstract/med/24723114
[32] Rappaz, B. et al. Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt. Express 13, 9361–9373 (2005). doi: 10.1364/OPEX.13.009361
[33] Lue, N. et al. Live cell refractometry using microfluidic devices. Opt. Lett. 31, 2759–2761 (2006). doi: 10.1364/OL.31.002759
[34] Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1, 153–156 (1969). doi: 10.1016/0030-4018(69)90052-2
[35] Chen, M. et al. Multi-layer Born multiple-scattering model for 3D phase microscopy. Optica 7, 394–403 (2020). doi: 10.1364/OPTICA.383030
[36] B., V. et al. Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution. Sci. Rep. 8, 5943 (2018).
[37] Lue, N. et al. Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion. Opt. Express 16, 16240–16246 (2008). doi: 10.1364/OE.16.016240
[38] Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photonics 8, 256–263 (2014). doi: 10.1038/nphoton.2013.350
[39] Phillips, K. G., Jacques, S. L. & McCarty, O. J. T. Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope. Phys. Rev. Lett. 109, 118105 (2012). doi: 10.1103/PhysRevLett.109.118105
[40] Paganin, D. & Nugent, K. A. Noninterferometric phase imaging with partially coherent light. Phys. Rev. Lett. 80, 2586–2589 (1998). doi: 10.1103/PhysRevLett.80.2586
[41] Leblanc-Hotte, A. et al. On-chip refractive index cytometry for whole-cell deformability discrimination. Lab Chip 19, 464–474 (2019). doi: 10.1039/C8LC00938D
[42] Liang, X. J. et al. Determining refractive index of single living cell using an integrated microchip. Sens. Actuators A: Phys. 133, 349–354 (2007). doi: 10.1016/j.sna.2006.06.045
[43] Wang, Z. et al. Spatial light interference tomography (SLIT). Opt. Express 19, 19907–19918 (2011). doi: 10.1364/OE.19.019907
[44] Kim, K. et al. Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography. Opt. Express 21, 32269–32278 (2013). doi: 10.1364/OE.21.032269
[45] Macias-Garza, F., Diller, K. R. & Bovik, A. C. Missing cone of frequencies and low-pass distortion in three-dimensional microscopic images. Optical Eng. 27, 276461 (1988). http://adsabs.harvard.edu/abs/1988OptEn..27..461M
[46] Habaza, M. et al. Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers. Opt. Lett. 40, 1881–1884 (2015). doi: 10.1364/OL.40.001881
[47] Habaza, M. et al. Rapid 3D refractive-index imaging of live cells in suspension without labeling using Dielectrophoretic cell rotation. Adv. Sci. 4, 1600205 (2017). doi: 10.1002/advs.201600205
[48] Charrière, F. et al. Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. Opt. Express 14, 7005–7013 (2006). doi: 10.1364/OE.14.007005
[49] Memmolo, P. et al. 3D morphometry of red blood cells by digital holography. Cytom. Part A 85, 1030–1036 (2014). doi: 10.1002/cyto.a.22570
[50] Chen, X. & Korotkova, O. Phase structuring of 2D complex coherence states. Opt. Lett. 44, 2470–2473 (2019). doi: 10.1364/OL.44.002470
[51] Mandel, L. & Wolf, E. Coherence properties of optical fields. Rev. Mod. Phys. 37, 231–287 (1965). doi: 10.1103/RevModPhys.37.231
[52] Kandel, M. E. et al. Real-time halo correction in phase contrast imaging. Biomed. Opt. Express 9, 623–635 (2018). doi: 10.1364/BOE.9.000623
[53] Shan, M. G., Kandel, M. E. & Popescu, G. Refractive index variance of cells and tissues measured by quantitative phase imaging. Opt. Express 25, 1573–1581 (2017). doi: 10.1364/OE.25.001573
[54] Ryu, D. H. et al. Deep learning-based optical field screening for robust optical diffraction tomography. Sci. Rep. 9, 15239 (2019). doi: 10.1038/s41598-019-51363-x
[55] Wang, H. D. et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 16, 103–110 (2019). doi: 10.1038/s41592-018-0239-0