[1] Willig, K. I., Harke, B., Medda, R. & Hell, S. W. STED microscopy with continuous wave beams. Nat. Methods 4, 915–918 (2007). doi: 10.1038/nmeth1108
[2] Kawata, S. et al. Finer features for functional microdevices. Nature 412, 697–698 (2001). doi: 10.1038/35089130
[3] Andrew, T. L., Tsai, H. Y. & Menon, R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science 324, 917–921 (2009). doi: 10.1126/science.1167704
[4] Scott, T. F. et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 324, 913–917 (2009). doi: 10.1126/science.1167610
[5] Li, L. J. et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324, 910–913 (2009). doi: 10.1126/science.1168996
[6] Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003). doi: 10.1038/nature01935
[7] Block, S. M. Making light work with optical tweezers. Nature 360, 493–495 (1992). doi: 10.1038/360493a0
[8] Mezouari, S. & Harvey, A. R. Validity of fresnel and fraunhofer approximations in scalar diffraction. J. Opt. A 5, S86–S91 (2003). doi: 10.1088/1464-4258/5/4/360
[9] Sheppard, C. J. R. & Matthews, H. J. Imaging in high-aperture optical systems. J. Opt. Soc. Am. A 4, 1354–1360 (1987). doi: 10.1364/JOSAA.4.001354
[10] Lee, K. G. et al. Vector field microscopic imaging of light. Nat. Photonics 1, 53–56 (2007). doi: 10.1038/nphoton.2006.37
[11] Dorn, R., Quabis, S. & Leuchs, G. Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003). doi: 10.1103/PhysRevLett.91.233901
[12] Wolf, E. Electromagnetic diffraction in optical systems. Ⅰ. An integral representation of the image field. Proc. R. Soc. A 253, 349–357 (1959).
[13] Hao, X., Kuang, C. F., Wang, T. T. & Liu, X. Effects of polarization on the de-excitation dark focal spot in STED microscopy. J. Opt. 12, 115707 (2010). doi: 10.1088/2040-8978/12/11/115707
[14] Urbach, H. P. & Pereira, S. F. Field in focus with a maximum longitudinal electric component. Phys. Rev. Lett. 100, 123904 (2008). doi: 10.1103/PhysRevLett.100.123904
[15] Leutenegger, M. et al. Fast focus field calculations. Opt. Express 14, 11277–11291 (2006). doi: 10.1364/OE.14.011277
[16] Lin, J. et al. Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional Fourier transform. Opt. Express 20, 1060–1069 (2012). doi: 10.1364/OE.20.001060
[17] Lin, J. et al. Direct calculation of a three-dimensional diffracted field. Opt. Letters 36, 1341–1343 (2011). doi: 10.1364/OL.36.001341
[18] Boruah, B. R. & Neil, M. A. A. Focal field computation of an arbitrarily polarized beam using fast Fourier transforms. Opt. Commun. 282, 4660–4667 (2009). doi: 10.1016/j.optcom.2009.09.019
[19] Nie, Z. Q. et al. Three-dimensional super-resolution longitudinal magnetization spot arrays. Light Sci. Appl. 6, e17032 (2017). doi: 10.1038/lsa.2017.32
[20] Born, M. & Wolf, E. Principles of Optics 7th edn (Cambridge University Press, Cambridge, 1999).
[21] Richards, B. & Wolf, E. Electromagnetic diffraction in optical systems, Ⅱ. Structure of the image field in an aplanatic system. Proc. R. Soc. A 253, 358–379 (1959).
[22] Bluestein, L. A linear filtering approach to the computation of discrete Fourier transform. IEEE Trans. Audio Electroacoust. 18, 451–455 (1970). doi: 10.1109/TAU.1970.1162132
[23] Rabiner, L., Schafer, R. & Rader, C. The chirp z-transform algorithm. IEEE Trans. Audio Electroacoust. 17, 86–92 (1969). doi: 10.1109/TAU.1969.1162034
[24] Kim, H. et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun. 7, 13317 (2016). doi: 10.1038/ncomms13317
[25] Li, X. P. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat. Commun. 6, 6984 (2015). doi: 10.1038/ncomms7984
[26] Hu, Y. L. et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization. Appl. Phys. Lett. 103, 141112 (2013). doi: 10.1063/1.4824307
[27] Ni, J. C. et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci. Appl. 6, e17011 (2017). doi: 10.1038/lsa.2017.11
[28] Zalevsky, Z., Mendlovic, D. & Dorsch, R. G. Gerchberg–Saxton algorithm applied in the fractional Fourier or the Fresnel domain. Opt. Lett. 21, 842–844 (1996). doi: 10.1364/OL.21.000842
[29] Hu, Y. L. et al. Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser. IEEE Photonics Technol. Lett. 26, 1154–1156 (2014). doi: 10.1109/LPT.2014.2317792
[30] Wang, H. F. et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photonics 2, 501–505 (2008). doi: 10.1038/nphoton.2008.127
[31] Wang, S. C. et al. Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics. Opt. Lett. 39, 5022–5025 (2014). doi: 10.1364/OL.39.005022
[32] Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994). doi: 10.1364/OL.19.000780
[33] Gan, Z. S. et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013). doi: 10.1038/ncomms3061
[34] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713
[35] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644
[36] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014). doi: 10.1038/nmat3839