[1] Schwenke, H. et al. Geometric error measurement and compensation of machines—an update. CIRP Annals 57, 660-675 (2008). doi: 10.1016/j.cirp.2008.09.008
[2] Liu, K. et al. Intelligentization of machine tools: comprehensive thermal error compensation of machine-workpiece system. The International Journal of Advanced Manufacturing Technology 102, 3865-3877 (2019). doi: 10.1007/s00170-019-03495-7
[3] Lyu, D. et al. Dynamic error of CNC machine tools: a state-of-the-art review. The International Journal of Advanced Manufacturing Technology 106, 1869-1891 (2020). doi: 10.1007/s00170-019-04732-9
[4] Tonnellier, X. et al. Precision grinding for rapid fabrication of segments for extremely large telescopes using the Cranfield BoX. Proceedings of SPIE 7739, Modern Technologies in Space-and Ground-based Telescopes and Instrumentation San Diego, SPIE, 2010.
[5] Comley, P. et al. Grinding metre scale mirror segments for the E-ELT ground based telescope. CIRP annals 60, 379-382 (2011). doi: 10.1016/j.cirp.2011.03.120
[6] Yoshioka, H., Kojima, K. & Toyota, D. Micro patterning on curved surface with a fast tool servo system for micro milling process. CIRP Annals 69, 325-328 (2020). doi: 10.1016/j.cirp.2020.04.046
[7] Tong, Z. et al. Fast-tool-servo micro-grooving freeform surfaces with embedded metrology. CIRP Annals 69, 505-508 (2020). doi: 10.1016/j.cirp.2020.04.111
[8] Zhu, Z. et al. Tuned diamond turning of micro-structured surfaces on brittle materials for the improvement of machining efficiency. CIRP Annals 68, 559-562 (2019). doi: 10.1016/j.cirp.2019.04.092
[9] Brinksmeier, E. et al. Ultra-precision grinding. CIRP Annals 59, 652-671 (2010). doi: 10.1016/j.cirp.2010.05.001
[10] Slocum, A.H. Precision machine design (Englewood Cliffs: Society of Manufacturing Engineers, 1992).
[11] Leach, R. & Smith, S.T. Basics of precision engineering (Boca Raton: CRC Press, 2018).
[12] Vermeulen, J.P.M.B., Rosielle, P.C.J.N. & Schellekens, P.H.J. An Advanced Ceramic Optical Diamond Turning Machine Design and Prototype Development. CIRP Annals 49, 407-410 (2000). doi: 10.1016/S0007-8506(07)62976-X
[13] Liang, Y. et al. Thermal optimization of an ultra-precision machine tool by the thermal displacement decomposition and counteraction method. The International Journal of Advanced Manufacturing Technology 76, 635-645 (2015). doi: 10.1007/s00170-014-6304-7
[14] Brecher, C., Utsch, P. & Wenzel, C. Five-axes accuracy enhancement by compact and integral design. CIRP Annals 58, 355-358 (2009). doi: 10.1016/j.cirp.2009.03.119
[15] Thompson, D.C. & McKeown, P. The design of an ultra-precision CNC measuring machine. CIRP annals 38, 501-504 (1989). doi: 10.1016/S0007-8506(07)62755-3
[16] Florussen, G.H.J. et al. Assessing geometrical errors of multi-axis machines by three-dimensional length measurements. Measurement 30, 241-255 (2001). doi: 10.1016/S0263-2241(01)00016-1
[17] Gao, W. et al. On-machine and in-process surface metrology for precision manufacturing. CIRP Annals 68, 843-866 (2019). doi: 10.1016/j.cirp.2019.05.005
[18] Li, D. et al. On-machine surface measurement and applications for ultra-precision machining: a state-of-the-art review. The International Journal of Advanced Manufacturing Technology 104, 831-847 (2019). doi: 10.1007/s00170-019-03977-8
[19] ISO. Test code for machine tools-Part 11: measuring instruments suitable for machine tool geometry tests. (Geneva, Switzerland: International Standards Organization, 2018).
[20] ISO. Test Code for Machine Tools, Part 6: determination of Positioning Accuracy on Body and Face Diagonals (Diagonal Displacement Tests). International Standards Organization, Geneva, Switzerland, (2002).
[21] ISO. Test code for machine tools—part 7: geometric accuracy of axes of rotation. International Standards Organization, Geneva, Switzerland. (2015).
[22] ISO. 230-1 Test code for machine tools-Part 1: Geometric accuracy of machines operating under no-load or finishing conditions. International Standards Organization, Geneva, Switzerland. (2012).
[23] Smith, G.T. Machine tool metrology: An industrial handbook (Cham: Springer, 2016).
[24] Ramesh, R., Mannan, M. & Poo, A. Error compensation in machine tools—a review: part I: geometric, cutting-force induced and fixture-dependent errors. International Journal of Machine Tools and Manufacture 40, 1235-1256 (2000). doi: 10.1016/S0890-6955(00)00009-2
[25] Srivastava, A., Veldhuis, S. & Elbestawit, M. Modelling geometric and thermal errors in a five-axis CNC machine tool. International Journal of Machine Tools and Manufacture 35, 1321-1337 (1995). doi: 10.1016/0890-6955(94)00048-O
[26] Zhu, S. et al. Integrated geometric error modeling, identification and compensation of CNC machine tools. International Journal of Machine Tools and Manufacture 52, 24-29 (2012). doi: 10.1016/j.ijmachtools.2011.08.011
[27] Khan, A.W. & Chen, W. A methodology for systematic geometric error compensation in five-axis machine tools. The International Journal of Advanced Manufacturing Technology 53, 615-628 (2011). doi: 10.1007/s00170-010-2848-3
[28] Peng, F. et al. Total differential methods based universal post processing algorithm considering geometric error for multi-axis NC machine tool. International Journal of Machine Tools and Manufacture 70, 53-62 (2013). doi: 10.1016/j.ijmachtools.2013.02.001
[29] Chen, J., Lin, S. & He, B. Geometric error compensation for multi-axis CNC machines based on differential transformation. The International Journal of Advanced Manufacturing Technology 71, 635-642 (2014). doi: 10.1007/s00170-013-5487-7
[30] Cheng, Q. et al. Sensitivity analysis of machining accuracy of multi-axis machine tool based on POE screw theory and Morris method. The International Journal of Advanced Manufacturing Technology 84, 2301-2318 (2016). doi: 10.1007/s00170-015-7791-x
[31] Xiang, S. & Altintas, Y. Modeling and compensation of volumetric errors for five-axis machine tools. International Journal of Machine Tools and Manufacture 101, 65-78 (2016). doi: 10.1016/j.ijmachtools.2015.11.006
[32] Yang, J., Mayer, J. & Altintas, Y. A position independent geometric errors identification and correction method for five-axis serial machines based on screw theory. International Journal of Machine Tools and Manufacture 95, 52-66 (2015). doi: 10.1016/j.ijmachtools.2015.04.011
[33] Fu, G. et al. Accuracy enhancement of five-axis machine tool based on differential motion matrix: geometric error modeling, identification and compensation. International Journal of Machine Tools and Manufacture 89, 170-181 (2015). doi: 10.1016/j.ijmachtools.2014.11.005
[34] Yu, Z., Tiemin, L. & Xiaoqiang, T. Geometric error modeling of machine tools based on screw theory. Procedia Engineering 24, 845-849 (2011). doi: 10.1016/j.proeng.2011.11.2748
[35] Lion Precision. Spindle Error Analyzer (SEA). https://www.lionprecision.com/products/machine-tool-inspection/spindle-error-analyzer/.
[36] Reinshaw. XL-80 laser measurement system Machine tools and CMM. https://www.renishaw.com/en/xl-80-laser-system--8268.
[37] Zargarbashi, S. & Mayer, J. Assessment of machine tool trunnion axis motion error, using magnetic double ball bar. International Journal of Machine Tools and Manufacture 46, 1823-1834 (2006). doi: 10.1016/j.ijmachtools.2005.11.010
[38] Lee, K.-I., Lee, D.-M. & Yang, S.-H. Parametric modeling and estimation of geometric errors for a rotary axis using double ball-bar. The International Journal of Advanced Manufacturing Technology 62, 741-750 (2012). doi: 10.1007/s00170-011-3834-0
[39] Hsieh, H.-L. & Pan, S.-W. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements. Optics Express 23, 2451-2465 (2015). doi: 10.1364/OE.23.002451
[40] Ibaraki, S., Oyama, C. & Otsubo, H. Construction of an error map of rotary axes on a five-axis machining center by static R-test. International Journal of Machine Tools and Manufacture 51, 190-200 (2011). doi: 10.1016/j.ijmachtools.2010.11.011
[41] Barman, S. & Sen, R. Enhancement of accuracy of multi-axis machine tools through error measurement and compensation of errors using laser interferometry. MAPAN 25, 79-87 (2010). doi: 10.1007/s12647-010-0010-1
[42] Rahman, M., Heikkala, J. & Lappalainen, K. Modeling, measurement and error compensation of multi-axis machine tools. Part I: theory. International Journal of Machine Tools and Manufacture 40, 1535-1546 (2000). doi: 10.1016/S0890-6955(99)00101-7
[43] Kong, L. et al. A kinematics and experimental analysis of form error compensation in ultra-precision machining. International Journal of Machine Tools and Manufacture 48, 1408-1419 (2008). doi: 10.1016/j.ijmachtools.2008.05.002
[44] Huang, N. et al. Integrated post-processor for 5-axis machine tools with geometric errors compensation. International Journal of Machine Tools and Manufacture 94, 65-73 (2015). doi: 10.1016/j.ijmachtools.2015.04.005
[45] Bi, Q. et al. Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement. International Journal of Machine Tools and Manufacture 89, 182-191 (2015). doi: 10.1016/j.ijmachtools.2014.11.008
[46] Liu, Y. et al. Generalized actual inverse kinematic model for compensating geometric errors in five-axis machine tools. International Journal of Mechanical Sciences 145, 299-317 (2018). doi: 10.1016/j.ijmecsci.2018.07.022
[47] Tlusty, J. Techniques for testing accuracy of NC machine tools. in Proceedings of the Twelfth International Machine Tool Design and Research Conference (eds Koenigsberger, F. & Tobias, S. A.) 333-345 (London: PalgraveSpringer, 1972), 333-345.
[48] Hocken, R. et al. Three dimensional metrology. CIRP Annals 26, 403-408 (1977).
[49] Bryan, J. A simple method for testing measuring machines and machine tools. Part 2: Construction details. Precision Engineering 4, 125-138 (1982). doi: 10.1016/0141-6359(82)90075-7
[50] Estler, W.T. Calibration and use of optical straightedges in the metrology of precision machines. Optical Engineering 24, 243372 (1985).
[51] Teimel, A. Technology and applications of grating interferometers in high-precision measurement. Precision Engineering 14, 147-154 (1992). doi: 10.1016/0141-6359(92)90003-F
[52] Gao, W. et al. Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage. Precision Engineering 30, 96-103 (2006). doi: 10.1016/j.precisioneng.2005.06.003
[53] Hwang, J. et al. A three-probe system for measuring the parallelism and straightness of a pair of rails for ultra-precision guideways. International Journal of Machine Tools and Manufacture 47, 1053-1058 (2007). doi: 10.1016/j.ijmachtools.2006.10.003
[54] Campbell, A. Measurement of lathe Z-slide straightness and parallelism using a flat land. Precision Engineering 17, 207-210 (1995). doi: 10.1016/0141-6359(95)00001-T
[55] Gao, W. et al. Measurement of slide error of an ultra-precision diamond turning machine by using a rotating cylinder workpiece. International Journal of Machine Tools and Manufacture 50, 404-410 (2010). doi: 10.1016/j.ijmachtools.2009.10.011
[56] Niu, Z. et al. Precision measurement of Z-slide vertical error motion of an ultra-precision lathe by using three-probe method. International Journal of Precision Engineering and Manufacturing 18, 651-660 (2017). doi: 10.1007/s12541-017-0078-4
[57] Donaldson, R.R. A simple method for separating spindle error from test ball roundness error. CIRP Annals 21, 125-126 (1972).
[58] Bryan, J. & JB, B. Unification of terminology concerning the error motion of axes of rotation. CIRP Annals 24, 555-562 (1975).
[59] Me, S. Unification document Me: axes of rotation. CIRP Annals 25, 545-564 (1976).
[60] Marsh, E. & Grejda, R. Experiences with the master axis method for measuring spindle error motions. Precision Engineering 24, 50-57 (2000). doi: 10.1016/S0141-6359(99)00027-6
[61] Zhang, G. et al. A multipoint method for spindle error motion measurement. CIRP Annals 46, 441-445 (1997). doi: 10.1016/S0007-8506(07)60861-0
[62] Salsbury, J.G. Implementation of the Estler face motion reversal technique. Precision Engineering 27, 189-194 (2003). doi: 10.1016/S0141-6359(02)00190-3
[63] Grejda, R., Marsh, E. & Vallance, R. Techniques for calibrating spindles with nanometer error motion. Precision Engineering 29, 113-123 (2005). doi: 10.1016/j.precisioneng.2004.05.003
[64] Marsh, E.R., Arneson, D.A. & Martin, D.L. A comparison of reversal and multiprobe error separation. Precision Engineering 34, 85-91 (2010). doi: 10.1016/j.precisioneng.2009.03.001
[65] Linxiang, C. The measuring accuracy of the multistep method in the error separation technique. Journal of Physics E: Scientific Instruments 22, 903-906 (1989). doi: 10.1088/0022-3735/22/11/002
[66] Buajarern, J. et al. Effect of step number on roundness determination using multi-step method. International Journal of Precision Engineering and Manufacturing 14, 2047-2050 (2013). doi: 10.1007/s12541-013-0257-x
[67] Haitjema, H. Revisiting the multi-step method: Enhanced error separation and reduced amount of measurements. CIRP Annals 64, 491-494 (2015). doi: 10.1016/j.cirp.2015.03.001
[68] Marsh, E., Couey, J. & Vallance, R. Nanometer-level comparison of three spindle error motion separation techniques. Journal of Manufacturing Science and Engineering 128, 180-187 (2006).
[69] Cappa, S., Reynaerts, D. & Al-Bender, F. A sub-nanometre spindle error motion separation technique. Precision Engineering 38, 458-471 (2014). doi: 10.1016/j.precisioneng.2013.12.011
[70] Cui, H. et al. Measurement and analysis of the radial motion error of aerostatic ultra-precision spindle. Measurement 137, 624-635 (2019). doi: 10.1016/j.measurement.2019.01.089
[71] Lion. Precision. Machine Tool Inspection. https://www.lionprecision.com/products/machine-tool-inspection/spindle-error-analyzer/.
[72] Chen, Y. et al. A novel multi-probe method for separating spindle radial error from artifact roundness error. The International Journal of Advanced Manufacturing Technology 93, 623-634 (2017). doi: 10.1007/s00170-017-0533-5
[73] Shi, S. et al. Uncertainty evaluation and reduction in three-probe roundness profile measurement based on the system transfer function. Precision Engineering 68, 139-157 (2021). doi: 10.1016/j.precisioneng.2020.11.011
[74] ISO. Uncertainty of Measurement–Part 3: Guide to the expression of Uncertainty in Measurement. International Standards Organization (1995).
[75] Ma, P. et al. Rotation error measurement technology and experimentation research of high-precision hydrostatic spindle. The International Journal of Advanced Manufacturing Technology 73, 1313-1320 (2014). doi: 10.1007/s00170-014-5905-5
[76] Lee, J. et al. Spindle error motion measurement of a large precision roll lathe. International Journal of Precision Engineering and Manufacturing 13, 861-867 (2012). doi: 10.1007/s12541-012-0112-5
[77] Ding, F. et al. In situ measurement of spindle radial and tilt error motions by complementary multi-probe method. Nanomanufacturing and Metrology 2, 225-234 (2019). doi: 10.1007/s41871-019-00051-5
[78] Anandan, K.P. & Ozdoganlar, O.B. A multi-orientation error separation technique for spindle metrology of miniature ultra-high-speed spindles. Precision Engineering 43, 119-131 (2016). doi: 10.1016/j.precisioneng.2015.07.002
[79] Shi, S. et al. A hybrid three-probe method for measuring the roundness error and the spindle error. Precision Engineering 45, 403-413 (2016). doi: 10.1016/j.precisioneng.2016.03.020
[80] Pezeshki, M. & Arezoo, B. Kinematic errors identification of three-axis machine tools based on machined work pieces. Precision Engineering 43, 493-504 (2016). doi: 10.1016/j.precisioneng.2015.09.018
[81] Ibaraki, S. et al. Machining tests to identify kinematic errors on five-axis machine tools. Precision Engineering 34, 387-398 (2010). doi: 10.1016/j.precisioneng.2009.09.007
[82] Gao, H., Fang, F. & Zhang, X. Reverse analysis on the geometric errors of ultra-precision machine. The International Journal of Advanced Manufacturing Technology 73, 1615-1624 (2014). doi: 10.1007/s00170-014-5931-3
[83] Liu, X. et al. Identification and compensation of main machining errors on surface form accuracy in ultra-precision diamond turning. International Journal of Machine Tools and Manufacture 105, 45-57 (2016). doi: 10.1016/j.ijmachtools.2016.03.001
[84] Gao, W. et al. Measurement and compensation of error motions of a diamond turning machine. Precision Engineering 31, 310-316 (2007). doi: 10.1016/j.precisioneng.2006.06.003
[85] Hong, G.S. & San Wong, Y. Profile error compensation in fast tool servo diamond turning of micro-structured surfaces. International Journal of Machine Tools and Manufacture 52, 13-23 (2012). doi: 10.1016/j.ijmachtools.2011.08.010
[86] Tao, H. et al. A new approach to identify geometric errors directly from the surface topography of workpiece in ultra-precision machining. International Journal of Machine Tools and Manufacture 106, 5159-5173 (2020).
[87] Borgonovo, E. & Plischke, E. Sensitivity analysis: a review of recent advances. European Journal of Operational Research 248, 869-887 (2016). doi: 10.1016/j.ejor.2015.06.032
[88] Li, Q. et al. A sensitivity method to analyze the volumetric error of five-axis machine tool. The International Journal of Advanced Manufacturing Technology 98, 1791-1805 (2018). doi: 10.1007/s00170-018-2322-1
[89] Saltelli, A. et al. Global sensitivity analysis: the primer (John Wiley & Sons, 2008).
[90] Fu, G. et al. Geometric error contribution modeling and sensitivity evaluating for each axis of five-axis machine tools based on POE theory and transforming differential changes between coordinate frames. International Journal of Machine Tools and Manufacture 147, 103455 (2019). doi: 10.1016/j.ijmachtools.2019.103455
[91] Zhang, X., Zhang, Y. & Pandey, M.D. Global sensitivity analysis of a CNC machine tool: application of MDRM. The International Journal of Advanced Manufacturing Technology 81, 159-169 (2015). doi: 10.1007/s00170-015-7128-9
[92] Li, J., Xie, F. & Liu, X.-J. Geometric error modeling and sensitivity analysis of a five-axis machine tool. The International Journal of Advanced Manufacturing Technology 82, 2037-2051 (2016). doi: 10.1007/s00170-015-7492-5
[93] Saltelli, A., Andres, T. & Homma, T. Sensitivity analysis of model output. Performance of the iterated fractional factorial design method. Computational Statistics & Data Analysis 20, 387-407 (1995). doi: 10.1016/0167-9473(95)92843-M
[94] Zou, X. et al. Sensitivity analysis using a variance-based method for a three-axis diamond turning machine. The International Journal of Advanced Manufacturing Technology 92, 4429-4443 (2017). doi: 10.1007/s00170-017-0394-y
[95] Li, D. et al. Kinematics error compensation for a surface measurement probe on an ultra-precision turning machine. Micromachines 9, 334 (2018). doi: 10.3390/mi9070334
[96] Liu, X. et al. Performance-controllable manufacture of optical surfaces by ultra-precision machining. The International Journal of Advanced Manufacturing Technology 94, 4289-4299 (2018). doi: 10.1007/s00170-017-1074-7