[1] Ray S. Applied Photographic Optics: Lenses and Optical Systems for Photography, Film, Video and Electronic Imaging, 3rd edn. Oxford: Focal Press; 2002.
[2] Ee HS, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett 2016; 16: 2818–2823. doi: 10.1021/acs.nanolett.6b00618
[3] Chronis N, Liu GL, Jeong KH, Lee LP. Tunable liquid-filled microlens array integrated with microfuidic network. Opt Express 2003; 11: 2370–2378. doi: 10.1364/OE.11.002370
[4] Chen J, Wang WS, Fang J, Varahramyan K. Variable-focusing microlens with microfluidic chip. J Micromech Microeng 2004; 14: 675–680. doi: 10.1088/0960-1317/14/5/003
[5] Tang SKY, Stan CA, Whitesides GM. Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. Lab Chip 2008; 8: 395–401. doi: 10.1039/b717037h
[6] Hendriks BHW, Kuiper S, van As MAJ, Renders CA, Tukker TW. Electrowetting-based variable-focus lens for miniature systems. Opt Rev 2005; 12: 255–259. doi: 10.1007/s10043-005-0255-z
[7] Lin HC, Chen MS, Lin YH. A review of electrically tunable focusing liquid crystal lenses. Trans Electr Electron Mater 2011; 12: 234–240. doi: 10.4313/TEEM.2011.12.6.234
[8] Nikolenko V, Watson BO, Araya R, Woodruff A, Peterka DS et al. SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circuits 2008; 2: 5. doi: 10.3389/neuro.04.005.2008
[9] Maurer C, Jesacher A, Bernet S, Ritsh-Marte M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev 2011; 5: 81–101. doi: 10.1002/lpor.200900047
[10] Watts CM, Shrekenhamer D, Montoya J, Lipworth G, Hunt J et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photonics 2014; 8: 605–609. doi: 10.1038/nphoton.2014.139
[11] Kelley PL. Self-focusing of optical beams. Phys Rev Lett 1965; 15: 1005–1008. doi: 10.1103/PhysRevLett.15.1005
[12] Lallemand P, Bloemberge N. Self-focusing of laser beams and stimulated Raman gain in liquids. Phys Rev Lett 1965; 15: 1010–1012. doi: 10.1103/PhysRevLett.15.1010
[13] Max CE, Arons J, Langdon AB. Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys Rev Lett 1974; 33: 209–212. doi: 10.1103/PhysRevLett.33.209
[14] Fang X, Tseng ML, Ou JY, MacDonald KF, Tsai DP et al. Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl Phys Lett 2014; 104: 141102. doi: 10.1063/1.4870635
[15] Nalla V, Valente J, Sun HD, Zheludev NI. 11-fs dark pulses generated via coherent absorption in plasmonic metamaterial. Opt Express 2017; 25: 22620. doi: 10.1364/OE.25.022620
[16] Plum E, Zheludev NI. Structured Surfaces of Planar Metamaterials. Cambridge: Cambridge University Press. 2011, p94–157.
[17] Thongrattanasiri S, Koppens FHL, García de Abajo FJ. Complete optical absorption in periodically patterned graphene. Phys Rev Lett 2012; 108: 047401. doi: 10.1103/PhysRevLett.108.047401
[18] Zhang J, MacDonald KF, Zheludev NI. Controlling light-with-light without nonlinearity. Light Sci Appl 2012; 1: e18, doi: 10.1038/lsa.2012.18.
[19] Chong YD, Ge L, Cao H, Stone AD. Coherent perfect absorbers: time-reversed lasers. Phys Rev Lett 2010; 105: 053901. doi: 10.1103/PhysRevLett.105.053901
[20] Wan WJ, Chong YD, Ge L, Noh H, Stone AD et al. Time-reversed lasing and interferometric control of absorption. Science 2011; 331: 889–892. doi: 10.1126/science.1200735
[21] Grote RR, Driscoll JB, Osgood RM Jr. Integrated optical modulators and switches using coherent perfect loss. Opt Lett 2013; 38: 3001–3004. doi: 10.1364/OL.38.003001
[22] Mousavi SA, Plum E, Shi J, Zheludev NI. Coherent control of optical polarization effects in metamaterials. Sci Rep 2015; 5: 8977. doi: 10.1038/srep08977
[23] Shi JH, Fang X, Rogers ETF, Plum E, MacDonald KF et al. Coherent control of Snell's Law at metasurfaces. Opt Express 2014; 22: 21051–21060. doi: 10.1364/OE.22.021051
[24] Roger T, Vezzoli S, Bolduc E, Valente J, Heitz JJF et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nat Commun 2015; 6: 7031. doi: 10.1038/ncomms8031
[25] Rao SM, Heitz JJF, Roger T, Westerberg N, Faccio D. Coherent control of light interaction with graphene. Opt Lett 2014; 39: 5345–5347. doi: 10.1364/OL.39.005345
[26] Fan YC, Liu Z, Zhang FL, Zhao Q, Wei ZY et al. Tunable mid-infrared coherent perfect absorption in a graphene meta-surface. Sci Rep 2015; 5: 13956. doi: 10.1038/srep13956
[27] Papaioannou M, Plum E, Valente J, Rogers ETF, Zheludev NI. Two-dimensional control of light with light on metasurfaces. Light Sci Appl 2016; 5: e16070, doi: 10.1038/lsa.2016.70.
[28] Papaioannou M, Plum E, Zheludev NI. All-optical pattern recognition and image processing on a metamaterial beam splitter. ACS Photonics 2017; 4: 217–222. doi: 10.1021/acsphotonics.6b00921
[29] Papaioannou M, Plum E, Valente J, Rogers ETF, Zheludev NI. All-optical multichannel logic based on coherent perfect absorption in a plasmonic metamaterial. APL Photonics 2016; 1: 090801. doi: 10.1063/1.4966269
[30] Esroy OK. Diffraction, Fourier Optics and Imaging. Hoboken, NJ, USA: John Wiley & Sons; 2006.
[31] Goodman JW. Introduction to Fourier Optics, 3rd edn. Greenwood Village, Colorado, USA: Roberts & Company Publishers; 2005.
[32] Fang X, MacDonald KF, Zheludev NI. Controlling light with light using coherent metadevices: all-optical transistor, summator, invertor. Light Sci Appl 2015; 4: e292, doi: 10.1038/lsa.2015.65.
[33] Plum E, Tanaka K, Chen WT, Fedotov VA, Tsai DP et al. A combinatorial approach to metamaterials discovery. J Opt 2011; 13: 055102. doi: 10.1088/2040-8978/13/5/055102
[34] Rogers ETF, Savo S, Lindberg J, Roy T, Dennis MR et al. Super-oscillatory optical needle. Appl Phys Lett 2013; 102: 031108. doi: 10.1063/1.4774385
[35] Durdin J, Miceli J Jr, Eberly JH. Diffraction-free beams. Appl Phys Lett 1987; 58: 1499–1501. doi: 10.1103/PhysRevLett.58.1499
[36] Čižmár T, Dholakia K. Tunable bessel light modes: engineering the axial propagation. Opt Express 2009; 17: 15558–15570. doi: 10.1364/OE.17.015558