[1] Ringsmuth, A. K., Landsberg, M. J. & Hankamer, B. Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations? Renew. Sustain Energy Rev. 62, 134-163 (2016). doi: 10.1016/j.rser.2016.04.016
[2] Dekker, J. P. & Boekema, E. J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta Bioenerg. 1706, 12-39 (2005). doi: 10.1016/j.bbabio.2004.09.009
[3] Uwada, T., Huang, L. T., Hee, P. Y., Usman, A. & Masuhara, H. Size-dependent optical properties of grana inside chloroplast of plant cells. J. Phys. Chem. B 121, 915-922 (2017). doi: 10.1021/acs.jpcb.6b10204
[4] Anderson, J. M., Chow, W. S., De Las & Rivas, J. Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: the grana enigma. Photosynth. Res. 98, 575-587 (2008). doi: 10.1007/s11120-008-9381-3
[5] Mullineaux, C. W. Function and evolution of grana. Trends Plant Sci. 10, 521-525 (2005). doi: 10.1016/j.tplants.2005.09.001
[6] Croce, R. & van Amerongen, H. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 10, 492-501 (2014). doi: 10.1038/nchembio.1555
[7] Anderson, J. M. Photoregulation of the composition, function, and structure of thylakoid membranes. Annu. Rev. Plant Physiol. 37, 93-136 (1986). doi: 10.1146/annurev.pp.37.060186.000521
[8] Anderson, J. M., Chow, W. S. & Goodchild, D. J. Thylakoid membrane organisation in sun/shade acclimation. Aust. J. Plant Physiol. 15, 11-26 (1988).
[9] Wientjes, E., Van Amerongen, H. & Croce, R. LHCII is an antenna of both photosystems after long-term acclimation. Biochim. Biophys. Acta Bioenerg. 1827, 420-426 (2013). doi: 10.1016/j.bbabio.2012.12.009
[10] Kouřil, R., Wientjes, E., Bultema, J. B., Croce, R. & Boekema, E. J. High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim. Biophys. Acta Bioenerg. 1827, 411-419 (2013). doi: 10.1016/j.bbabio.2012.12.003
[11] Rochaix, J. D. Regulation and dynamics of the light-harvesting system. Annu. Rev. Plant Biol. 65, 287-309 (2014). doi: 10.1146/annurev-arplant-050213-040226
[12] Goldschmidt-Clermont, M. & Bassi, R. Sharing light between two photosystems: mechanism of state transitions. Curr. Opin. Plant Biol. 25, 71-78 (2015).
[13] Anderson, J. M., Horton, P., Kim, E. H. & Chow, W. S. Towards elucidation of dynamic structural changes of plant thylakoid architecture. Philos. Trans. R. Soc. B Biol. Sci. 367, 3515-3524 (2012). doi: 10.1098/rstb.2012.0373
[14] Wood, W. H. J. et al. Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. Nat. Plants 4, 116-127 (2018). doi: 10.1038/s41477-017-0092-7
[15] Kirchhoff, H. et al. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl. Acad. Sci. USA 108, 20248-20253 (2011). doi: 10.1073/pnas.1104141109
[16] Daum, B., Nicastro, D., Austin, J., McIntosh, J. R. & Kühlbrandt, W. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22, 1299-1312 (2010). doi: 10.1105/tpc.109.071431
[17] Fristedt, R. et al. Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. Plant Cell 21, 3950-3964 (2009). doi: 10.1105/tpc.109.069435
[18] Khatoon, M. et al. Quality control of photosystem II: thylakoid unstacking is necessary to avoid further damage to the D1 protein and to facilitate D1 degradation under light stress in spinach thylakoids. J. Biol. Chem. 284, 25343-25352 (2009). doi: 10.1074/jbc.M109.007740
[19] Herbstová, M., Tietz, S., Kinzel, C., Turkina, M. V. & Kirchhoff, H. Architectural switch in plant photosynthetic membranes induced by light stress. Proc. Natl. Acad. Sci. USA 109, 20130-20135 (2012). doi: 10.1073/pnas.1214265109
[20] Garab, G. & Mustárdy, L. Role of LHCII-containing macrodomains in the structure, function and dynamics of grana. Aust. J. Plant Physiol. 27, 649-658 (1999).
[21] Janik, E. et al. Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex Ⅱ model membranes. Plant Cell 25, 2155-2170 (2013). doi: 10.1105/tpc.113.113076
[22] Chuartzman, S. G. et al. Thylakoid membrane remodeling during state transitions in Arabidopsis. Plant Cell Online 20, 1029-1039 (2008). doi: 10.1105/tpc.107.055830
[23] Liberton, M., Howard Berg, R., Heuser, J., Roth, R. & Pakrasi, H. B. Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227, 129-138 (2006). doi: 10.1007/s00709-006-0145-7
[24] Mullineaux, C. W. Electron transport and light-harvesting switches in cyanobacteria. Front. Plant Sci. 5, 7 (2014).
[25] Watanabe, M. & Ikeuchi, M. Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth. Res. 116, 265-276 (2013). doi: 10.1007/s11120-013-9905-3
[26] Ranjbar Choubeh, R., Wientjes, E., Struik, P. C., Kirilovsky, D. & van Amerongen, H. State transitions in the cyanobacterium Synechococcus elongatus 7942 involve reversible quenching of the photosystem II core. Biochim. Biophys. Acta Bioenerg. 1859, 1059-1066 (2018). doi: 10.1016/j.bbabio.2018.06.008
[27] Durnford, D. G. et al. A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J. Mol. Evol. 48, 59-68 (1999). doi: 10.1007/PL00006445
[28] Engel, B. D. et al. Native architecture of the chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife 4, e04889 (2015). doi: 10.7554/eLife.04889
[29] Terashima, I., Hanba, Y. T., Tholen, D. & Niinemets, Ü. Leaf functional anatomy in relation to photosynthesis. Plant Physiol. 155, 108-116 (2011). doi: 10.1104/pp.110.165472
[30] Wada, M. Chloroplast movement. Plant Sci. 210, 177-182 (2013). doi: 10.1016/j.plantsci.2013.05.016
[31] Capretti, A., Lesage, A. & Gregorkiewicz, T. Integrating quantum dots and dielectric Mie resonators: a hierarchical metamaterial inheriting the best of both. ACS Photonics 4, 2187-2196 (2017). doi: 10.1021/acsphotonics.7b00320
[32] Margalit, O., Sarafis, V. & Zalevsky, Z. The effect of grana and inter-grana components of chloroplasts on green light transmission: a preliminary study. Optik 121, 1439-1442 (2010). doi: 10.1016/j.ijleo.2009.02.007
[33] Jacobs, M. et al. Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency. Nat Plants 2, 16162 (2016). doi: 10.1038/nplants.2016.162
[34] Vignolini, S., Moyroud, E., Glover, B. J. & Steiner, U. Analysing photonic structures in plants. J. R. Soc. Interface 10, 20130394 (2013). doi: 10.1098/rsif.2013.0394
[35] Paillotin, G., Dobek, A., Breton, J., Leibl, W. & Trissl, H. W. Why does the light-gradient photovoltage from photosynthetic organelles show a wavelength-dependent polarity? Biophys. J. 65, 379-385 (1993). doi: 10.1016/S0006-3495(93)81066-X
[36] Kirchhoff, H. Molecular crowding and order in photosynthetic membranes. Trends Plant Sci. 13, 201-207 (2008). doi: 10.1016/j.tplants.2008.03.001
[37] Cinque, G., Croce, R., Holzwarth, A. & Bassi, R. Energy transfer among CP29 chlorophylls: Calculated förster rates and experimental transient absorption at room temperature. Biophys. J. 79, 1706-1717 (2000). doi: 10.1016/S0006-3495(00)76423-X
[38] Ruban, A. V., Johnson, M. P. & Duffy, C. D. P. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta Bioenerg. 1817, 167-181 (2012). doi: 10.1016/j.bbabio.2011.04.007
[39] Taiz, L. & Zeiger, E. Plant Physiology (Sinauer Associates, Sunderland, 2010).
[40] Nevo, R. et al. in Lipids in Photosynthesis: Essential and Regulatory Functions (eds Wada, H. & Murata, N.) 295-328 (Springer, Dordrecht, 2009).
[41] Guérin, C. A., Mallet, P. & Sentenac, A. Effective-medium theory for finite-size aggregates. J. Opt. Soc. Am. A. 23, 349-358 (2006). doi: 10.1364/JOSAA.23.000349
[42] Markel, V. A. & Schotland, J. C. Homogenization of Maxwell's equations in periodic composites: Boundary effects and dispersion relations. Phys. Rev. E 85, 066603 (2012). doi: 10.1103/PhysRevE.85.066603
[43] Tsukerman, I. Classical and non-classical effective medium theories: new perspectives. Phys. Lett. A 381, 1635-1640 (2017). doi: 10.1016/j.physleta.2017.02.028
[44] Goodenough, U. W. & Levine, R. P. Chloroplast ultrastructure in mutant strains of Chlamydomonas reinhardi lacking components of the photosynthetic apparatus. Plant Physiol. 44, 990-1000 (1969). doi: 10.1104/pp.44.7.990
[45] Kieselbach, T., Hagman, Å., Andersson, B. & Schröder, W. P. The thylakoid lumen of chloroplasts. Isolation and characterization. J. Biol. Chem. 273, 6710-6716 (1998). doi: 10.1074/jbc.273.12.6710
[46] Van Eerden, F. J., De Jong, D. H., De Vries, A. H., Wassenaar, T. A. & Marrink, S. J. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim. Biophys. Acta Biomembr. 1848, 1319-1330 (2015). doi: 10.1016/j.bbamem.2015.02.025
[47] Ohki, S. Dielectric constant and refractive index of lipid bilayers. J. Theor. Biol. 19, 97-115 (1968). doi: 10.1016/0022-5193(68)90008-8
[48] Den Engelsen, D. Optical anisotropy in ordered systems of lipids. Surf. Sci. 56, 272-280 (1976). doi: 10.1016/0039-6028(76)90452-0
[49] Huang, W. & Levitt, D. G. Theoretical calculation of the dielectric constant of a bilayer membrane. Biophys. J. 17, 111-128 (1977).
[50] Wei, X. P. et al. Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature 534, 69-74 (2016). doi: 10.1038/nature18020
[51] Milton, G. W. The Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics (Cambridge University Press, Cambridge, 2002).
[52] Yariv, A. & Yeh, P. Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers. J. Opt. Soc. Am. 67, 438-447 (1977). doi: 10.1364/JOSA.67.000438
[53] Keller, D. & Bustamante, C. Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism. J. Chem. Phys. 84, 2972-2980 (1986). doi: 10.1063/1.450278