[1] Zhu, X. J. et al. Anti-Stokes shift luminescent materials for bio-applications. Chem. Soc. Rev. 46, 1025–1039 (2017). doi: 10.1039/C6CS00415F
[2] Uoyama, H. et al. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012). doi: 10.1038/nature11687
[3] He, T. C. et al. Superior optical nonlinearity of an exceptional fluorescent stilbene dye. Appl. Phys. Lett. 106, 111904 (2015). doi: 10.1063/1.4915311
[4] Zheng, Z. et al. Aggregation-induced nonlinear optical effects of aiegen nanocrystals for ultradeep in vivo bioimaging. Adv. Mater. 31, 1904799 (2019). doi: 10.1002/adma.201904799
[5] Larson, D. R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003). doi: 10.1126/science.1083780
[6] Liu, Q. et al. Upconversion luminescence imaging of cells and small animals. Nat. Protoc. 8, 2033–2044 (2013). doi: 10.1038/nprot.2013.114
[7] Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004). doi: 10.1021/cr020357g
[8] Liu, Q. et al. Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J. Am. Chem. Soc. 134, 5390–5397 (2012). doi: 10.1021/ja3003638
[9] Baluschev, S. et al. Up-conversion fluorescence: noncoherent excitation by sunlight. Phys. Rev. Lett. 97, 143903 (2006). doi: 10.1103/PhysRevLett.97.143903
[10] Askes, S. H. C. et al. Water-dispersible silica-coated upconverting liposomes: can a thin silica layer protect TTA-UC against oxygen quenching? ACS Biomater. Sci. Eng. 3, 322–334 (2017). doi: 10.1021/acsbiomaterials.6b00678
[11] Treger, J. S. et al. Real-time imaging of electrical signals with an infrared FDA-approved dye. Biophysical J. 107, L09–L12 (2014). doi: 10.1016/j.bpj.2014.07.054
[12] Yu, X. M. et al. Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy. J. Mater. Chem. B 7, 6623–6629 (2019). doi: 10.1039/C9TB01381D
[13] Pickett, L. W. A vibrational analysis of the absorption spectrum of furan in the schumann region. The Journal of Chemical. Physics 8, 293–297 (1940).
[14] Benson, R. C. & Kues, H. A. Absorption and fluorescence properties of cyanine dyes. J. Chem. Eng. Data 22, 379–383 (1977). doi: 10.1021/je60075a020
[15] Chen, Z. X. et al. Emitters with a pyridine-3, 5-dicarbonitrile core and short delayed fluorescence lifetimes of about 1.5 μs: orange-red TADF-based OLEDs with very slow efficiency roll-offs at high luminance. J. Mater. Chem. C. 6, 6543–6548 (2018). doi: 10.1039/C8TC01698D
[16] Skaisgiris, R. et al. Origin of dual emission in σ-bridged donor–acceptor TADF compounds. J. Mater. Chem. C. 7, 12601–12609 (2019). doi: 10.1039/C9TC03548F
[17] Yuan, J. et al. Purely organic optoelectronic materials with ultralong-lived excited states under ambient conditions. Sci. Bull. 60, 1631–1637 (2015). doi: 10.1007/s11434-015-0894-9
[18] Chen, J. X. et al. Red/near-infrared thermally activated delayed fluorescence OLEDs with near 100% internal quantum efficiency. Angew. Chem. Int. Ed. 58, 14660–14665 (2019). doi: 10.1002/anie.201906575
[19] Erickson, L. E. On anti-stokes luminescence from Rhodamine 6G in ethanol solutions. J. Lumin. 5, 1–13 (1972). doi: 10.1016/0022-2313(72)90030-0
[20] Chang, M. C. et al. Observation of anti-Stokes fluorescence in organic dye solutions. IEEE Journal of Quantum. Electronics 8, 527–528 (1972).
[21] Bloor, D. et al. Frequency up-conversion in fluid and solid solutions of the oxazine dye, Rhodamine B. Journal of the Chemical Society. Faraday Trans. 89, 4013–4015 (1993). doi: 10.1039/ft9938904013
[22] Clark, J. L. & Rumbles, G. Laser cooling in the condensed phase by frequency up-conversion. Phys. Rev. Lett. 76, 2037–2040 (1996). doi: 10.1103/PhysRevLett.76.2037
[23] Clark, J. L. & Miller, P. F. & Rumbles, G. Red edge photophysics of ethanolic Rhodamine 101 and the observation of laser cooling in the condensed phase. J. Phys. Chem. A 102, 4428–4437 (1998). doi: 10.1021/jp980589c
[24] Liu, Y. et al. Near-infrared in vivo bioimaging using a molecular upconversion probe. Chem. Commun. 52, 7466–7469 (2016). doi: 10.1039/C6CC03401B
[25] Kachynski, A. V. et al. Three-dimensional confocal thermal imaging using anti-stokes luminescence. Appl. Phys. Lett. 87, 023901 (2005). doi: 10.1063/1.1993761
[26] Treanor, C. E., Rich, J. W. & Rehm, R. G. Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions. The Journal of Chemical. Physics 48, 1798–1807 (1968).
[27] Ahmad, M. et al. Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J. Phys. D: Appl. Phys. 35, 1473–1476 (2002). doi: 10.1088/0022-3727/35/13/303
[28] Knobbe, E. T. et al. Laser behavior and photostability characteristics of organic dye doped silicate gel materials. Appl. Opt. 29, 2729–2733 (1990). doi: 10.1364/AO.29.002729
[29] Zhou, J., Liu, Z. & Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 41, 1323–1349 (2012). doi: 10.1039/C1CS15187H
[30] Longmire, M., Choyke, P. L. & Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3, 703–717 (2008). doi: 10.2217/17435889.3.5.703
[31] Nyk, M. et al. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 8, 3834–3838 (2008). doi: 10.1021/nl802223f
[32] Palmer, K. F. & Williams, D. Optical properties of water in the near infrared. J. Optical Soc. Am. 64, 1107–1110 (1974). doi: 10.1364/JOSA.64.001107
[33] Hemmer, E. et al. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale 5, 11339–11361 (2013). doi: 10.1039/c3nr02286b
[34] Yang, Y. Q. et al. Semiconducting polymer nanoparticles as theranostic system for Near-Infrared-II fluorescence imaging and photothermal therapy under safe laser fluence. ACS Nano 14, 2509–2521 (2020). doi: 10.1021/acsnano.0c00043
[35] Liu, W., Chen, R. Z. & He, S. L. Ultra-stable near-infrared Tm3+-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity. J. Innovative Optical Health Sci. 12, 1950013 (2019). doi: 10.1142/S1793545819500135