[1] Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003). doi: 10.1038/nature01937
[2] Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25-34 (2015). doi: 10.1038/nnano.2014.311
[3] Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8, 95-103 (2014). doi: 10.1038/nphoton.2013.238
[4] Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702-704 (2011). doi: 10.1126/science.1203056
[5] Zhong, J. H. et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. Nanotechnol. 12, 132-136 (2016).
[6] Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757-760 (2008). doi: 10.1038/nature07012
[7] Kawata, S., Inouye, Y. & Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics 3, 388-394 (2009). doi: 10.1038/nphoton.2009.111
[8] Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotechnol. 6, 107-111 (2011). doi: 10.1038/nnano.2010.278
[9] Baida, H. et al. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance. Phys. Rev. Lett. 107, 057402 (2011). doi: 10.1103/PhysRevLett.107.057402
[10] Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858-3887 (2011). doi: 10.1021/cr1002547
[11] Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630-7638 (2014). doi: 10.1021/nn502445f
[12] Tan, S. J. et al. Plasmonic coupling at a metal/semiconductor interface. Nat. Photonics 11, 806-812 (2017). doi: 10.1038/s41566-017-0049-4
[13] Giugni, A. et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 8, 845-852 (2013). doi: 10.1038/nnano.2013.207
[14] Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632-635 (2015). doi: 10.1126/science.aac5443
[15] Harutyunyan, H. et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotechnol. 10, 770-774 (2015). doi: 10.1038/nnano.2015.165
[16] Furube, A., Du, L. C., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852-12853 (2007). doi: 10.1021/ja076134v
[17] Li, W. & Valentine, J. G. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics 6, 177-191 (2017). doi: 10.1515/nanoph-2015-0154
[18] Yu, Y. et al. Ultrafast plasmonic hot electron transfer in Au nanoantenna/MoS2 heterostructures. Adv. Funct. Mater. 26, 6394-6401 (2016). doi: 10.1002/adfm.201601779
[19] Kang, Y. M. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467-6471 (2014). doi: 10.1002/adma.201401802
[20] Hoang, C. V. et al. Interplay of hot electrons from localized and propagating plasmons. Nat. Commun. 8, 771 (2017). doi: 10.1038/s41467-017-00815-x
[21] Kim, M., Lin, M. H., Son, J., Xu, H. X. & Nam, J. M. Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges. Adv. Opt. Mater. 5, 1700004 (2017). doi: 10.1002/adom.201700004
[22] Wen, X. L., Xu, W. G., Zhao, W. J., Khurgin, J. B. & Xiong, Q. H. Plasmonic hot carriers-controlled second harmonic generation in WSe2 bilayers. Nano Lett. 18, 1686-1692 (2018). doi: 10.1021/acs.nanolett.7b04707
[23] Fang, Z. Y. et al. Graphene-antenna sandwich photodetector. Nano Lett. 12, 3808-3813 (2012). doi: 10.1021/nl301774e
[24] Sobhani, A. et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 4, 1643 (2013). doi: 10.1038/ncomms2642
[25] Li, W. & Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510-3514 (2014). doi: 10.1021/nl501090w
[26] Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015). doi: 10.1038/ncomms9379
[27] Sundararaman, R. et al. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014). doi: 10.1038/ncomms6788
[28] Bernardi, M., Mustafa, J., Neaton, J. B. & Louie, S. G. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 6, 7044 (2015). doi: 10.1038/ncomms8044
[29] Narang, P., Sundararaman, R. & Atwater, H. A. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 5, 96-111 (2016). doi: 10.1515/nanoph-2016-0007
[30] Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78, 013901 (2015). doi: 10.1088/0034-4885/78/1/013901
[31] Vasa, P. et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photonics 7, 128-132 (2013). doi: 10.1038/nphoton.2012.340
[32] Groß, H., Hamm, J. M., Tufarelli, T., Hess, O. & Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 4, eaar4906 (2018). doi: 10.1126/sciadv.aar4906
[33] Kleemann, M.-E. et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun. 8, 1296 (2017).
[34] Thomas, R. et al. Plexcitons: the role of oscillator strengths and spectral widths in determining strong coupling. ACS Nano 12, 402-415 (2018). doi: 10.1021/acsnano.7b06589
[35] Chen, H. J. et al. Plasmon-molecule interactions. Nano Today 5, 494-505 (2010). doi: 10.1016/j.nantod.2010.08.009
[36] Zheng, D. et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett. 17, 3809-3814 (2017). doi: 10.1021/acs.nanolett.7b01176
[37] Zeng, P. et al. Photoinduced electron transfer in the strong coupling regime: waveguide-plasmon polaritons. Nano Lett. 16, 2651-2656 (2016). doi: 10.1021/acs.nanolett.6b00310
[38] Rodriguez, S. R. K., Murai, S., Verschuuren, M. A. & Rivas, J. G. Light-emitting waveguide-plasmon polaritons. Phys. Rev. Lett. 109, 166803 (2012). doi: 10.1103/PhysRevLett.109.166803
[39] Konrad, A., Kern, A. M., Brecht, M. & Meixner, A. J. Strong and coherent coupling of a plasmonic nanoparticle to a subwavelength fabry-pérot resonator. Nano Lett. 15, 4423-4428 (2015). doi: 10.1021/acs.nanolett.5b00766
[40] Chu, Y. Z. & Crozier, K. B. Experimental study of the interaction between localized and propagating surface plasmons. Opt. Lett. 34, 244-246 (2009). doi: 10.1364/OL.34.000244
[41] Liu, W. J. et al. Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice. Nano Lett. 16, 1262-1269 (2016). doi: 10.1021/acs.nanolett.5b04588
[42] Cade, N. I., Ritman-Meer, T. & Richards, D. Strong coupling of localized plasmons and molecular excitons in nanostructured silver films. Phys. Rev. B 79, 241404 (2009). doi: 10.1103/PhysRevB.79.241404
[43] Bellessa, J. et al. Exciton/plasmon polaritons in GaA/Al0.93Ga0.07As heterostructures near a metallic layer. Phys. Rev. B 78, 205326 (2008). doi: 10.1103/PhysRevB.78.205326
[44] Su, M. N. et al. Optomechanics of single aluminum nanodisks. Nano Lett. 17, 2575-2583 (2017). doi: 10.1021/acs.nanolett.7b00333
[45] Johnson, P. B. & Christy, R. W. Optical constants of the noble Metals. Phys. Rev. B 6, 4370-4379 (1972). doi: 10.1103/PhysRevB.6.4370
[46] Liu, J. T., Wang, T. B., Li, X. J. & Liu, N. H. Enhanced absorption of monolayer MoS2 with resonant back reflector. J. Appl. Phys. 115, 193511 (2014). doi: 10.1063/1.4878700