| [1] | Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003). doi: 10.1038/nature01937 |
| [2] | Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25-34 (2015). doi: 10.1038/nnano.2014.311 |
| [3] | Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8, 95-103 (2014). doi: 10.1038/nphoton.2013.238 |
| [4] | Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702-704 (2011). doi: 10.1126/science.1203056 |
| [5] | Zhong, J. H. et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. Nanotechnol. 12, 132-136 (2016). |
| [6] | Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757-760 (2008). doi: 10.1038/nature07012 |
| [7] | Kawata, S., Inouye, Y. & Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics 3, 388-394 (2009). doi: 10.1038/nphoton.2009.111 |
| [8] | Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotechnol. 6, 107-111 (2011). doi: 10.1038/nnano.2010.278 |
| [9] | Baida, H. et al. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance. Phys. Rev. Lett. 107, 057402 (2011). doi: 10.1103/PhysRevLett.107.057402 |
| [10] | Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858-3887 (2011). doi: 10.1021/cr1002547 |
| [11] | Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630-7638 (2014). doi: 10.1021/nn502445f |
| [12] | Tan, S. J. et al. Plasmonic coupling at a metal/semiconductor interface. Nat. Photonics 11, 806-812 (2017). doi: 10.1038/s41566-017-0049-4 |
| [13] | Giugni, A. et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 8, 845-852 (2013). doi: 10.1038/nnano.2013.207 |
| [14] | Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632-635 (2015). doi: 10.1126/science.aac5443 |
| [15] | Harutyunyan, H. et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotechnol. 10, 770-774 (2015). doi: 10.1038/nnano.2015.165 |
| [16] | Furube, A., Du, L. C., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852-12853 (2007). doi: 10.1021/ja076134v |
| [17] | Li, W. & Valentine, J. G. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics 6, 177-191 (2017). doi: 10.1515/nanoph-2015-0154 |
| [18] | Yu, Y. et al. Ultrafast plasmonic hot electron transfer in Au nanoantenna/MoS2 heterostructures. Adv. Funct. Mater. 26, 6394-6401 (2016). doi: 10.1002/adfm.201601779 |
| [19] | Kang, Y. M. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467-6471 (2014). doi: 10.1002/adma.201401802 |
| [20] | Hoang, C. V. et al. Interplay of hot electrons from localized and propagating plasmons. Nat. Commun. 8, 771 (2017). doi: 10.1038/s41467-017-00815-x |
| [21] | Kim, M., Lin, M. H., Son, J., Xu, H. X. & Nam, J. M. Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges. Adv. Opt. Mater. 5, 1700004 (2017). doi: 10.1002/adom.201700004 |
| [22] | Wen, X. L., Xu, W. G., Zhao, W. J., Khurgin, J. B. & Xiong, Q. H. Plasmonic hot carriers-controlled second harmonic generation in WSe2 bilayers. Nano Lett. 18, 1686-1692 (2018). doi: 10.1021/acs.nanolett.7b04707 |
| [23] | Fang, Z. Y. et al. Graphene-antenna sandwich photodetector. Nano Lett. 12, 3808-3813 (2012). doi: 10.1021/nl301774e |
| [24] | Sobhani, A. et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 4, 1643 (2013). doi: 10.1038/ncomms2642 |
| [25] | Li, W. & Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510-3514 (2014). doi: 10.1021/nl501090w |
| [26] | Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015). doi: 10.1038/ncomms9379 |
| [27] | Sundararaman, R. et al. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014). doi: 10.1038/ncomms6788 |
| [28] | Bernardi, M., Mustafa, J., Neaton, J. B. & Louie, S. G. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 6, 7044 (2015). doi: 10.1038/ncomms8044 |
| [29] | Narang, P., Sundararaman, R. & Atwater, H. A. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 5, 96-111 (2016). doi: 10.1515/nanoph-2016-0007 |
| [30] | Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78, 013901 (2015). doi: 10.1088/0034-4885/78/1/013901 |
| [31] | Vasa, P. et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photonics 7, 128-132 (2013). doi: 10.1038/nphoton.2012.340 |
| [32] | Groß, H., Hamm, J. M., Tufarelli, T., Hess, O. & Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 4, eaar4906 (2018). doi: 10.1126/sciadv.aar4906 |
| [33] | Kleemann, M.-E. et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun. 8, 1296 (2017). |
| [34] | Thomas, R. et al. Plexcitons: the role of oscillator strengths and spectral widths in determining strong coupling. ACS Nano 12, 402-415 (2018). doi: 10.1021/acsnano.7b06589 |
| [35] | Chen, H. J. et al. Plasmon-molecule interactions. Nano Today 5, 494-505 (2010). doi: 10.1016/j.nantod.2010.08.009 |
| [36] | Zheng, D. et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett. 17, 3809-3814 (2017). doi: 10.1021/acs.nanolett.7b01176 |
| [37] | Zeng, P. et al. Photoinduced electron transfer in the strong coupling regime: waveguide-plasmon polaritons. Nano Lett. 16, 2651-2656 (2016). doi: 10.1021/acs.nanolett.6b00310 |
| [38] | Rodriguez, S. R. K., Murai, S., Verschuuren, M. A. & Rivas, J. G. Light-emitting waveguide-plasmon polaritons. Phys. Rev. Lett. 109, 166803 (2012). doi: 10.1103/PhysRevLett.109.166803 |
| [39] | Konrad, A., Kern, A. M., Brecht, M. & Meixner, A. J. Strong and coherent coupling of a plasmonic nanoparticle to a subwavelength fabry-pérot resonator. Nano Lett. 15, 4423-4428 (2015). doi: 10.1021/acs.nanolett.5b00766 |
| [40] | Chu, Y. Z. & Crozier, K. B. Experimental study of the interaction between localized and propagating surface plasmons. Opt. Lett. 34, 244-246 (2009). doi: 10.1364/OL.34.000244 |
| [41] | Liu, W. J. et al. Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice. Nano Lett. 16, 1262-1269 (2016). doi: 10.1021/acs.nanolett.5b04588 |
| [42] | Cade, N. I., Ritman-Meer, T. & Richards, D. Strong coupling of localized plasmons and molecular excitons in nanostructured silver films. Phys. Rev. B 79, 241404 (2009). doi: 10.1103/PhysRevB.79.241404 |
| [43] | Bellessa, J. et al. Exciton/plasmon polaritons in GaA/Al0.93Ga0.07As heterostructures near a metallic layer. Phys. Rev. B 78, 205326 (2008). doi: 10.1103/PhysRevB.78.205326 |
| [44] | Su, M. N. et al. Optomechanics of single aluminum nanodisks. Nano Lett. 17, 2575-2583 (2017). doi: 10.1021/acs.nanolett.7b00333 |
| [45] | Johnson, P. B. & Christy, R. W. Optical constants of the noble Metals. Phys. Rev. B 6, 4370-4379 (1972). doi: 10.1103/PhysRevB.6.4370 |
| [46] | Liu, J. T., Wang, T. B., Li, X. J. & Liu, N. H. Enhanced absorption of monolayer MoS2 with resonant back reflector. J. Appl. Phys. 115, 193511 (2014). doi: 10.1063/1.4878700 |