[1] |
Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586-593 (2019). doi: 10.1038/s41565-019-0435-9 |
[2] |
Chen, Y. et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat. Commun. 9, 2994 (2018). doi: 10.1038/s41467-018-05456-2 |
[3] |
Kaganskiy, A. et al. Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses. Opt. Commun. 413, 162-166 (2018). doi: 10.1016/j.optcom.2017.12.032 |
[4] |
Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340-345 (2016). doi: 10.1038/nphoton.2016.23 |
[5] |
Cadeddu, D. et al. A fiber-coupled quantum-dot on a photonic tip. Appl. Phys. Lett. 108, 011112 (2016). doi: 10.1063/1.4939264 |
[6] |
Liu, S. F. et al. A deterministic quantum dot micropillar single photon source with > 65% extraction efficiency based on fluorescence imaging method. Sci. Rep. 7, 13986 (2017). doi: 10.1038/s41598-017-13433-w |
[7] |
Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 6, 7662 (2015). doi: 10.1038/ncomms8662 |
[8] |
Sapienza, L. et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun. 6, 7833 (2015). doi: 10.1038/ncomms8833 |
[9] |
Gazzano, O. et al. Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013). doi: 10.1038/ncomms2434 |
[10] |
Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174-177 (2010). doi: 10.1038/nphoton.2009.287x |
[11] |
Fischbach, S. et al. Single quantum dot with microlens and 3D-printed micro-objective as integrated bright single-photon source. ACS Photonics 4, 1327-1332 (2017). doi: 10.1021/acsphotonics.7b00253 |
[12] |
Thiele, S. et al. Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing. Opt. Lett. 41, 3029-3032 (2016). doi: 10.1364/OL.41.003029 |
[13] |
Hsu, H. C. et al. Optimized semi-sphere lens design for high power LED package. Microelectron. Reliabil. 52, 894-899 (2012). doi: 10.1016/j.microrel.2011.08.022 |
[14] |
Moiseev, M. A., Doskolovich, L. L. & Kazanskiy, N. L. Design of high-efficient freeform LED lens for illumination of elongated rectangular regions. Opt. Express 19, A225-A233 (2011). doi: 10.1364/OE.19.00A225 |
[15] |
Johlin, E. et al. Broadband highly directive 3D nanophotonic lenses. Nat. Commun. 9, 4742 (2018). doi: 10.1038/s41467-018-07104-1 |
[16] |
Sartison, M. et al. Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy. Sci. Rep. 7, 39916 (2017). doi: 10.1038/srep39916 |
[17] |
Woodhead, C. S. et al. Increasing the light extraction and longevity of TMDC monolayers using liquid formed micro-lenses. 2D Mater. 4, 015032 (2016). doi: 10.1088/2053-1583/4/1/015032 |
[18] |
Schlehahn, A. et al. Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses. Appl. Phys. Lett. 108, 021104 (2016). doi: 10.1063/1.4939658 |
[19] |
Assafrao, A. C. et al. Application of micro solid immersion lens as probe for near-field scanning microscopy. Appl. Phys. Lett. 104, 101101 (2014). doi: 10.1063/1.4867460 |
[20] |
Hu, C. N., Hsieh, H. T. & Su, G. D. J. Fabrication of microlens arrays by a rolling process with soft polydimethylsiloxane molds. J. Micromech. Microeng. 21, 065013 (2011). doi: 10.1088/0960-1317/21/6/065013 |
[21] |
Hadden, J. P. et al. Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Appl. Phys. Lett. 97, 241901 (2010). doi: 10.1063/1.3519847 |
[22] |
Descartes, R. La dioptrique. In: Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences, plus la dioptrique, les météores et la géométrie, vol. Discours Huictiesme, 89-121 (A Leyde de l'Imprimerie de Jan Maire, Leyde, 1637). |
[23] |
Dottermusch, S. et al. Exposure-dependent refractive index of nanoscribe ip-dip photoresist layers. Opt. Lett. 44, 29-32 (2019). doi: 10.1364/OL.44.000029 |
[24] |
Schell, A. W., Neumer, T. & Benson, O. Numerical analysis of efficient light extraction with an elliptical solid immersion lens. Opt. Lett. 39, 4639-4642 (2014). doi: 10.1364/OL.39.004639 |
[25] |
Yang, J. J., Hugonin, J. P. & Lalanne, P. Near-to-far field transformations for radiative and guided waves. ACS Photonics 3, 395-402 (2016). doi: 10.1021/acsphotonics.5b00559 |
[26] |
Dietrich, P. I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photonics 12, 241-247 (2018). doi: 10.1038/s41566-018-0133-4 |
[27] |
Thiele, S. et al. 3D-printed eagle eye: compound microlens system for foveated imaging. Sci. Adv. 3, e1602655 (2017). doi: 10.1126/sciadv.1602655 |
[28] |
Dietrich, P. I. et al. Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems. Opt. Express 25, 18288-18295 (2017). doi: 10.1364/OE.25.018288 |
[29] |
Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121 |
[30] |
Gissibl, T. et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun. 7, 11763 (2016). doi: 10.1038/ncomms11763 |
[31] |
Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699-712 (2012). doi: 10.1038/nnano.2012.193 |
[32] |
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419-425 (2013). doi: 10.1038/nature12385 |
[33] |
Binder, J. et al. Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures. Nat. Commun. 10, 2335 (2019). doi: 10.1038/s41467-019-10323-9 |
[34] |
Lyons, T. P. et al. The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2. Nat. Commun. 10, 2330 (2019). doi: 10.1038/s41467-019-10228-7 |
[35] |
Mak, K. F., Xiao, D. & Shan, J. Light-valley interactions in 2D semiconductors. Nat. Photonics 12, 451-460 (2018). doi: 10.1038/s41566-018-0204-6 |
[36] |
Yong, C. K. et al. Biexcitonic optical stark effects in monolayer molybdenum diselenide. Nat. Phys. 14, 1092-1096 (2018). doi: 10.1038/s41567-018-0216-7 |
[37] |
Sun, Z. P., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 10, 227-238 (2016). doi: 10.1038/nphoton.2016.15 |
[38] |
Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216-226 (2016). doi: 10.1038/nphoton.2015.282 |
[39] |
Kazimierczuk, T. et al. Magnetophotoluminescence study of intershell exchange interaction in CdTe/ZnTe quantum dots. Phys. Rev. B 84, 165319 (2011). doi: 10.1103/PhysRevB.84.165319 |
[40] |
Kobak, J. et al. Comparison of magneto-optical properties of various excitonic complexes in CdTe and CdSe self-assembled quantum dots. J. Phys.: Condens. Matter 28, 265302 (2016). doi: 10.1088/0953-8984/28/26/265302 |
[41] |
Khosrofian, J. M. & Garetz, B. A. Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data. Appl. Opt. 22, 3406-3410 (1983). doi: 10.1364/AO.22.003406 |
[42] |
Smoleński, T. et al. Magnetic ground state of an individual Fe2+ ion in strained semiconductor nanostructure. Nat. Commun. 7, 10484 (2016). doi: 10.1038/ncomms10484 |
[43] |
Kobak, J. et al. Designing quantum dots for solotronics. Nat. Commun. 5, 3191 (2014). doi: 10.1038/ncomms4191 |
[44] |
Besombes, L. et al. Probing the spin state of a single magnetic ion in an individual quantum dot. Phys. Rev. Lett. 93, 207403 (2004). doi: 10.1103/PhysRevLett.93.207403 |
[45] |
Le Gall, C. et al. Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation. Phys. Rev. Lett. 102, 127402 (2009). doi: 10.1103/PhysRevLett.102.127402 |
[46] |
Goryca, M. et al. Optical manipulation of a single Mn spin in a CdTe-based quantum dot. Phys. Rev. Lett. 103, 087401 (2009). doi: 10.1103/PhysRevLett.103.087401 |
[47] |
Evans, T. J. et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater. 6, 1700982 (2018). doi: 10.1002/adom.201700982 |
[48] |
Alanis, J. A. et al. Large-scale statistics for threshold optimization of optically pumped nanowire lasers. Nano Lett. 17, 4860-4865 (2017). doi: 10.1021/acs.nanolett.7b01725 |
[49] |
Peng, K. et al. Single nanowire photoconductive terahertz detectors. Nano Lett. 15, 206-210 (2015). doi: 10.1021/nl5033843 |
[50] |
Mao, S. et al. Experimental setup for investigation of nanoclusters at cryogenic temperatures by electron spin resonance and optical spectroscopies. Rev. Sci. Instrum. 85, 073906 (2014). doi: 10.1063/1.4891189 |
[51] |
Shinar, J. Optically detected magnetic resonance studies of luminescence-quenching processes in π-conjugated materials and organic light-emitting devices. Laser Photonics Rev. 6, 767-786 (2012). doi: 10.1002/lpor.201100026 |
[52] |
Glenn, D. R. et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555, 351-354 (2018). doi: 10.1038/nature25781 |
[53] |
Shi, Y. Z. et al. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci. Adv. 4, eaao0773 (2018). doi: 10.1126/sciadv.aao0773 |
[54] |
Lee, K. S. et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4, 1035-1048 (2019). doi: 10.1038/s41564-019-0394-9 |
[55] |
Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534-538 (2015). doi: 10.1038/nature16454 |
[56] |
Shi, Y. Z. et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat. Commun. 9, 815 (2018). doi: 10.1038/s41467-018-03156-5 |
[57] |
Bogucki, A. et al. Optical fiber micro-connector with nanometer positioning precision for rapid prototyping of photonic devices. Opt. Express 26, 11513-11518 (2018). doi: 10.1364/OE.26.011513 |
[58] |
Cicha, K. et al. Young's modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment. J. Appl. Phys. 112, 094906 (2012). doi: 10.1063/1.4764330 |
[59] |
Ovsianikov, A. et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2, 2257-2262 (2008). doi: 10.1021/nn800451w |
[60] |
Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D. Materials 1, 011002 (2014). doi: 10.1088/2053-1583/1/1/011002 |
[61] |
Higgins, D. A. et al. High-resolution direct-write multiphoton photolithography in poly(methylmethacrylate) films. Appl. Phys. Lett. 88, 184101 (2006). doi: 10.1063/1.2200476 |