[1] Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586-593 (2019). doi: 10.1038/s41565-019-0435-9
[2] Chen, Y. et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat. Commun. 9, 2994 (2018). doi: 10.1038/s41467-018-05456-2
[3] Kaganskiy, A. et al. Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses. Opt. Commun. 413, 162-166 (2018). doi: 10.1016/j.optcom.2017.12.032
[4] Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340-345 (2016). doi: 10.1038/nphoton.2016.23
[5] Cadeddu, D. et al. A fiber-coupled quantum-dot on a photonic tip. Appl. Phys. Lett. 108, 011112 (2016). doi: 10.1063/1.4939264
[6] Liu, S. F. et al. A deterministic quantum dot micropillar single photon source with > 65% extraction efficiency based on fluorescence imaging method. Sci. Rep. 7, 13986 (2017). doi: 10.1038/s41598-017-13433-w
[7] Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 6, 7662 (2015). doi: 10.1038/ncomms8662
[8] Sapienza, L. et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun. 6, 7833 (2015). doi: 10.1038/ncomms8833
[9] Gazzano, O. et al. Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013). doi: 10.1038/ncomms2434
[10] Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174-177 (2010). doi: 10.1038/nphoton.2009.287x
[11] Fischbach, S. et al. Single quantum dot with microlens and 3D-printed micro-objective as integrated bright single-photon source. ACS Photonics 4, 1327-1332 (2017). doi: 10.1021/acsphotonics.7b00253
[12] Thiele, S. et al. Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing. Opt. Lett. 41, 3029-3032 (2016). doi: 10.1364/OL.41.003029
[13] Hsu, H. C. et al. Optimized semi-sphere lens design for high power LED package. Microelectron. Reliabil. 52, 894-899 (2012). doi: 10.1016/j.microrel.2011.08.022
[14] Moiseev, M. A., Doskolovich, L. L. & Kazanskiy, N. L. Design of high-efficient freeform LED lens for illumination of elongated rectangular regions. Opt. Express 19, A225-A233 (2011). doi: 10.1364/OE.19.00A225
[15] Johlin, E. et al. Broadband highly directive 3D nanophotonic lenses. Nat. Commun. 9, 4742 (2018). doi: 10.1038/s41467-018-07104-1
[16] Sartison, M. et al. Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy. Sci. Rep. 7, 39916 (2017). doi: 10.1038/srep39916
[17] Woodhead, C. S. et al. Increasing the light extraction and longevity of TMDC monolayers using liquid formed micro-lenses. 2D Mater. 4, 015032 (2016). doi: 10.1088/2053-1583/4/1/015032
[18] Schlehahn, A. et al. Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses. Appl. Phys. Lett. 108, 021104 (2016). doi: 10.1063/1.4939658
[19] Assafrao, A. C. et al. Application of micro solid immersion lens as probe for near-field scanning microscopy. Appl. Phys. Lett. 104, 101101 (2014). doi: 10.1063/1.4867460
[20] Hu, C. N., Hsieh, H. T. & Su, G. D. J. Fabrication of microlens arrays by a rolling process with soft polydimethylsiloxane molds. J. Micromech. Microeng. 21, 065013 (2011). doi: 10.1088/0960-1317/21/6/065013
[21] Hadden, J. P. et al. Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Appl. Phys. Lett. 97, 241901 (2010). doi: 10.1063/1.3519847
[22] Descartes, R. La dioptrique. In: Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences, plus la dioptrique, les météores et la géométrie, vol. Discours Huictiesme, 89-121 (A Leyde de l'Imprimerie de Jan Maire, Leyde, 1637).
[23] Dottermusch, S. et al. Exposure-dependent refractive index of nanoscribe ip-dip photoresist layers. Opt. Lett. 44, 29-32 (2019). doi: 10.1364/OL.44.000029
[24] Schell, A. W., Neumer, T. & Benson, O. Numerical analysis of efficient light extraction with an elliptical solid immersion lens. Opt. Lett. 39, 4639-4642 (2014). doi: 10.1364/OL.39.004639
[25] Yang, J. J., Hugonin, J. P. & Lalanne, P. Near-to-far field transformations for radiative and guided waves. ACS Photonics 3, 395-402 (2016). doi: 10.1021/acsphotonics.5b00559
[26] Dietrich, P. I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photonics 12, 241-247 (2018). doi: 10.1038/s41566-018-0133-4
[27] Thiele, S. et al. 3D-printed eagle eye: compound microlens system for foveated imaging. Sci. Adv. 3, e1602655 (2017). doi: 10.1126/sciadv.1602655
[28] Dietrich, P. I. et al. Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems. Opt. Express 25, 18288-18295 (2017). doi: 10.1364/OE.25.018288
[29] Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121
[30] Gissibl, T. et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun. 7, 11763 (2016). doi: 10.1038/ncomms11763
[31] Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699-712 (2012). doi: 10.1038/nnano.2012.193
[32] Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419-425 (2013). doi: 10.1038/nature12385
[33] Binder, J. et al. Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures. Nat. Commun. 10, 2335 (2019). doi: 10.1038/s41467-019-10323-9
[34] Lyons, T. P. et al. The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2. Nat. Commun. 10, 2330 (2019). doi: 10.1038/s41467-019-10228-7
[35] Mak, K. F., Xiao, D. & Shan, J. Light-valley interactions in 2D semiconductors. Nat. Photonics 12, 451-460 (2018). doi: 10.1038/s41566-018-0204-6
[36] Yong, C. K. et al. Biexcitonic optical stark effects in monolayer molybdenum diselenide. Nat. Phys. 14, 1092-1096 (2018). doi: 10.1038/s41567-018-0216-7
[37] Sun, Z. P., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 10, 227-238 (2016). doi: 10.1038/nphoton.2016.15
[38] Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216-226 (2016). doi: 10.1038/nphoton.2015.282
[39] Kazimierczuk, T. et al. Magnetophotoluminescence study of intershell exchange interaction in CdTe/ZnTe quantum dots. Phys. Rev. B 84, 165319 (2011). doi: 10.1103/PhysRevB.84.165319
[40] Kobak, J. et al. Comparison of magneto-optical properties of various excitonic complexes in CdTe and CdSe self-assembled quantum dots. J. Phys.: Condens. Matter 28, 265302 (2016). doi: 10.1088/0953-8984/28/26/265302
[41] Khosrofian, J. M. & Garetz, B. A. Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data. Appl. Opt. 22, 3406-3410 (1983). doi: 10.1364/AO.22.003406
[42] Smoleński, T. et al. Magnetic ground state of an individual Fe2+ ion in strained semiconductor nanostructure. Nat. Commun. 7, 10484 (2016). doi: 10.1038/ncomms10484
[43] Kobak, J. et al. Designing quantum dots for solotronics. Nat. Commun. 5, 3191 (2014). doi: 10.1038/ncomms4191
[44] Besombes, L. et al. Probing the spin state of a single magnetic ion in an individual quantum dot. Phys. Rev. Lett. 93, 207403 (2004). doi: 10.1103/PhysRevLett.93.207403
[45] Le Gall, C. et al. Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation. Phys. Rev. Lett. 102, 127402 (2009). doi: 10.1103/PhysRevLett.102.127402
[46] Goryca, M. et al. Optical manipulation of a single Mn spin in a CdTe-based quantum dot. Phys. Rev. Lett. 103, 087401 (2009). doi: 10.1103/PhysRevLett.103.087401
[47] Evans, T. J. et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater. 6, 1700982 (2018). doi: 10.1002/adom.201700982
[48] Alanis, J. A. et al. Large-scale statistics for threshold optimization of optically pumped nanowire lasers. Nano Lett. 17, 4860-4865 (2017). doi: 10.1021/acs.nanolett.7b01725
[49] Peng, K. et al. Single nanowire photoconductive terahertz detectors. Nano Lett. 15, 206-210 (2015). doi: 10.1021/nl5033843
[50] Mao, S. et al. Experimental setup for investigation of nanoclusters at cryogenic temperatures by electron spin resonance and optical spectroscopies. Rev. Sci. Instrum. 85, 073906 (2014). doi: 10.1063/1.4891189
[51] Shinar, J. Optically detected magnetic resonance studies of luminescence-quenching processes in π-conjugated materials and organic light-emitting devices. Laser Photonics Rev. 6, 767-786 (2012). doi: 10.1002/lpor.201100026
[52] Glenn, D. R. et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555, 351-354 (2018). doi: 10.1038/nature25781
[53] Shi, Y. Z. et al. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci. Adv. 4, eaao0773 (2018). doi: 10.1126/sciadv.aao0773
[54] Lee, K. S. et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4, 1035-1048 (2019). doi: 10.1038/s41564-019-0394-9
[55] Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534-538 (2015). doi: 10.1038/nature16454
[56] Shi, Y. Z. et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat. Commun. 9, 815 (2018). doi: 10.1038/s41467-018-03156-5
[57] Bogucki, A. et al. Optical fiber micro-connector with nanometer positioning precision for rapid prototyping of photonic devices. Opt. Express 26, 11513-11518 (2018). doi: 10.1364/OE.26.011513
[58] Cicha, K. et al. Young's modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment. J. Appl. Phys. 112, 094906 (2012). doi: 10.1063/1.4764330
[59] Ovsianikov, A. et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2, 2257-2262 (2008). doi: 10.1021/nn800451w
[60] Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D. Materials 1, 011002 (2014). doi: 10.1088/2053-1583/1/1/011002
[61] Higgins, D. A. et al. High-resolution direct-write multiphoton photolithography in poly(methylmethacrylate) films. Appl. Phys. Lett. 88, 184101 (2006). doi: 10.1063/1.2200476