| [1] | Blasse, G. Scintillator materials. Chemistry of Materials 6, 1465-1475 (1994). doi: 10.1021/cm00045a002 |
| [2] | Wei, H. T. & Huang, J. S. Halide lead perovskites for ionizing radiation detection. Nature Communications 10, 1066 (2019). doi: 10.1038/s41467-019-08981-w |
| [3] | Chen, Q. S. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88-93 (2018). doi: 10.1038/s41586-018-0451-1 |
| [4] | Nagarkar, V. V. et al. Structured CsI (Tl) scintillators for X-ray imaging applications. IEEE Transactions on Nuclear Science 45, 492-496 (1998). doi: 10.1109/23.682433 |
| [5] | Melcher, C. L. Scintillation crystals for PET. Journal of Nuclear Medicine 41, 1051-1055 (2000). |
| [6] | Kryemadhi, A. et al. A LYSO crystal array readout by silicon photomultipliers as compact detector for space applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 912, 93-96 (2018). |
| [7] | Martin, T., Koch, A. & Nikl, M. Scintillator materials for X-ray detectors and beam monitors. MRS Bulletin 42, 451-457 (2017). doi: 10.1557/mrs.2017.116 |
| [8] | Nikl, M. & Yoshikawa, A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Advanced Optical Materials 3, 463-481 (2015). doi: 10.1002/adom.201400571 |
| [9] | Creason, T. D. et al. Rb2CuX3 (X = Cl, Br): 1D all-inorganic copper halides with ultrabright blue emission and up-conversion photoluminescence. Advanced Optical Materials 8, 1901338 (2020). doi: 10.1002/adom.201901338 |
| [10] | Zhao, X. et al. All-inorganic copper halide as a stable and self-absorption-free X-ray scintillator. The Journal of Physical Chemistry Letters 11, 1873-1880 (2020). doi: 10.1021/acs.jpclett.0c00161 |
| [11] | Yamabayashi, K. et al. Investigation of K2Cu(Cl, Br)3 crystalline scintillators. Japanese Journal of Applied Physics 63, 022002 (2024). doi: 10.35848/1347-4065/ad238d |
| [12] | Morad, V. et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation. Journal of the American Chemical Society 141, 9764-9768 (2019). doi: 10.1021/jacs.9b02365 |
| [13] | Xu, L. J. et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nature Communications 11, 4329 (2020). doi: 10.1038/s41467-020-18119-y |
| [14] | Li, S. et al. One-dimensional lead-free halide with near-unity greenish-yellow light emission. Chemistry of Materials 32, 6525-6531 (2020). doi: 10.1021/acs.chemmater.0c01794 |
| [15] | Lin, N. et al. 0D hybrid cuprous halide as an efficient light emitter and X-ray scintillator. Laser & Photonics Reviews 17, 2300427 (2023). |
| [16] | Xu, Y. K. et al. Organic cation design of manganese halide hybrids glass toward low-temperature integrated efficient, scaling, and reproducible X-ray detector. Advanced Optical Materials 11, 2300216 (2023). doi: 10.1002/adom.202300216 |
| [17] | Fu, P. F. et al. Achieving narrowed bandgaps and blue-light excitability in zero-dimensional hybrid metal halide phosphors via introducing cation-cation bonding. Energy & Environmental Materials 7, e12518 (2024). |
| [18] | Lu, L. et al. All-inorganic perovskite nanocrystals: next-generation scintillation materials for high-resolution X-ray imaging. Nanoscale Advances 4, 680-696 (2022). doi: 10.1039/D1NA00815C |
| [19] | Yang, B. et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Advanced Materials 31, 1904711 (2019). doi: 10.1002/adma.201904711 |
| [20] | Lian, L. Y. et al. Highly luminescent zero-dimensional organic copper halides for X-ray scintillation. The Journal of Physical Chemistry Letters 12, 6919-6926 (2021). doi: 10.1021/acs.jpclett.1c01946 |
| [21] | Zeng, F. J. et al. Green anti-solvent assisted crystallization strategy for air-stable uniform Cs3Cu2I5 perovskite films with highly efficient blue photoluminescence. Journal of Luminescence 223, 117178 (2020). doi: 10.1016/j.jlumin.2020.117178 |
| [22] | Fu, P. F. et al. Photoluminescence behavior of zero-dimensional manganese halide tetrahedra embedded in conjugated organic matrices. Journal of Physical Chemistry Letters 12, 7394-7399 (2021). doi: 10.1021/acs.jpclett.1c02154 |
| [23] | Zhao, X. G. et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. Journal of the American Chemical Society 139, 2630-2638 (2017). doi: 10.1021/jacs.6b09645 |
| [24] | Meng, H. X. et al. Stable organic antimony halides with near-unity photoluminescence quantum yield for X-ray imaging. Laser & Photonics Reviews 17, 2201007 (2023). |
| [25] | Li, D. Y. et al. Reversible triple-mode photo- and radioluminescence and nonlinear optical switching in highly efficient 0D hybrid cuprous halides. Chemistry of Materials 35, 6598-6611 (2023). doi: 10.1021/acs.chemmater.3c00038 |
| [26] | Zhao, X. et al. Solution-processed hybrid europium (II) iodide scintillator for sensitive X-ray detection. Research 6, 0125 (2023). doi: 10.34133/research.0125 |
| [27] | Peng, H. et al. Highly efficient cool-white photoluminescence of (Gua)3Cu2I5 single crystals: formation and optical properties. ACS Applied Materials & Interfaces 13, 13443-13451 (2021). |
| [28] | Lian, L. Y. et al. Single-component white-light emitters with excellent color rendering indexes and high photoluminescence quantum efficiencies. Advanced Optical Materials 10, 2101640 (2022). doi: 10.1002/adom.202101640 |
| [29] | Lecoq, P. Development of new scintillators for medical applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 809, 130-139 (2016). |
| [30] | Song, K. S. & Williams, R. T. Self-trapped excitons. 2nd edn. (Berlin: Springer, 1996). |
| [31] | Han, Q. J. et al. Temperature-dependent photoluminescence of CsPbX3 nanocrystal films. Journal of Luminescence 198, 350-356 (2018). doi: 10.1016/j.jlumin.2018.02.036 |
| [32] | Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nature Physics 11, 582-587 (2015). doi: 10.1038/nphys3357 |
| [33] | Jiang, Y., Wang, X. & Pan, A. L. Properties of excitons and photogenerated charge carriers in metal halide perovskites. Advanced Materials 31, 1806671 (2019). doi: 10.1002/adma.201806671 |
| [34] | Zhang, F. et al. Regulating the singlet and triplet emission of Sb3+ ions to achieve single-component white-light emitter with record high color-rendering index and stability. Nano Letters 22, 5046-5054 (2022). doi: 10.1021/acs.nanolett.2c00733 |
| [35] | Stadler, W. et al. Optical investigations of defects in Cd1-xZnxTe. Physical Review. B 51, 10619-10630 (1995). doi: 10.1103/PhysRevB.51.10619 |
| [36] | McCall, K. M. et al. Strong electron-phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chemistry of Materials 29, 4129-4145 (2017). doi: 10.1021/acs.chemmater.7b01184 |
| [37] | Luo, J. J. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541-545 (2018). doi: 10.1038/s41586-018-0691-0 |
| [38] | Li, S. R. et al. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. The Journal of Physical Chemistry Letters 10, 1999-2007 (2019). doi: 10.1021/acs.jpclett.8b03604 |
| [39] | Zhou, Y. et al. Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Letters 6, 739-768 (2021). doi: 10.1021/acsenergylett.0c02430 |
| [40] | Maddalena, F. et al. Inorganic, organic, and perovskite halides with nanotechnology for high-light yield X- and γ-ray scintillators. Crystals 9, 88 (2019). doi: 10.3390/cryst9020088 |
| [41] | Zhang, F. et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Advanced Materials 34, 2204801 (2022). doi: 10.1002/adma.202204801 |
| [42] | Pan, J. G. et al. CuI crystal growth in acetonitrile solvent by the cycle-evaporation method. Crystal Growth & Design 9, 3825-3827 (2009). |
| [43] | Balamurugan, N. et al. Growth and characterization of undoped and thallium doped cesium iodide single crystals. Journal of Crystal Growth 286, 294-299 (2006). doi: 10.1016/j.jcrysgro.2005.08.057 |
| [44] | Yao, D. L. et al. Fabrication and performance of CsI (Tl) scintillation films with pixel-like columnar-matrix structure. IEEE Transactions on Nuclear Science 62, 699-703 (2015). doi: 10.1109/TNS.2015.2391197 |
| [45] | Blöchl, P. E. Projector augmented-wave method. Physical Review B 50, 17953-17979 (1994). doi: 10.1103/PhysRevB.50.17953 |
| [46] | Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Physical Review Letters 77, 3865-3868 (1996). doi: 10.1103/PhysRevLett.77.3865 |
| [47] | Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry 27, 1787-1799 (2006). doi: 10.1002/jcc.20495 |