[1] Ashkin, A. et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288-290 (1986). doi: 10.1364/OL.11.000288
[2] Dogariu, A., Sukhov, S. & Sáenz, J. Optically induced 'negative forces'. Nat. Photonics 7, 24-27 (2013). doi: 10.1038/nphoton.2012.315
[3] Novitsky, A. V. & Novitsky, D. V. Negative propagation of vector Bessel beams. J. Opt. Soc. Am. A 24, 2844-2849 (2007). doi: 10.1364/JOSAA.24.002844
[4] Ruffner, D. B. & Grier, D. G. Optical conveyors: a class of active tractor beams. Phys. Rev. Lett. 109, 163903 (2012). doi: 10.1103/PhysRevLett.109.163903
[5] Chen, J. et al. Optical pulling force. Nat. Photonics 5, 531-534 (2011). doi: 10.1038/nphoton.2011.153
[6] Kajorndejnukul, V. et al. Linear momentum increase and negative optical forces at dielectric interface. Nat. Photonics 7, 787-790 (2013). doi: 10.1038/nphoton.2013.192
[7] Sukhov, S. & Dogariu, A. Negative nonconservative forces: optical "tractor beams" for arbitrary objects. Phys. Rev. Lett. 107, 203602 (2011). doi: 10.1103/PhysRevLett.107.203602
[8] Li, X. et al. Optical pulling at macroscopic distances. Sci. Adv. 5, eaau7814 (2019). doi: 10.1126/sciadv.aau7814
[9] Zhu, T. T. et al. Self-induced backaction optical pulling force. Phys. Rev. Lett. 120, 123901 (2018). doi: 10.1103/PhysRevLett.120.123901
[10] Lin, L. H. et al. Optothermal manipulations of colloidal particles and living cells. Acc. Chem. Res. 51, 1465-1474 (2018). doi: 10.1021/acs.accounts.8b00102
[11] Shvedov, V. et al. A long-range polarization-controlled optical tractor beam. Nat. Photonics 8, 846-850 (2014). doi: 10.1038/nphoton.2014.242
[12] Lu, J. S. et al. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force. Phys. Rev. Lett. 118, 043601 (2017). doi: 10.1103/PhysRevLett.118.043601
[13] Lu, J. S. et al. Nanoscale Lamb wave-driven motors in nonliquid environments. Sci. Adv. 5, eaau8271 (2019). doi: 10.1126/sciadv.aau8271
[14] Piazza, R. & Parola, A. Thermophoresis in colloidal suspensions. J. Phys.: Condens. Matter 20, 153102 (2008).ADS doi: 10.1088/0953-8984/20/15/153102
[15] Würger, A. Thermal non-equilibrium transport in colloids. Rep. Prog. Phys. 73, 126601 (2010). doi: 10.1088/0034-4885/73/12/126601
[16] Braun, M. & Cichos, F. Optically controlled thermophoretic trapping of single nano-objects. ACS Nano 7, 11200-11208 (2013). doi: 10.1021/nn404980k
[17] Braun, M. et al. Single molecules trapped by dynamic inhomogeneous temperature fields. Nano Lett. 15, 5499-5505 (2015). doi: 10.1021/acs.nanolett.5b01999
[18] Braun, D. & Libchaber, A. Trapping of DNA by thermophoretic depletion and convection. Phys. Rev. Lett. 89, 188103 (2002). doi: 10.1103/PhysRevLett.89.188103
[19] Zhang, M. et al. Thermophoresis-controlled size-dependent DNA translocation through an array of nanopores. ACS Nano 12, 4574-4582 (2018). doi: 10.1021/acsnano.8b00961
[20] Lin, L. H. et al. Opto-thermoelectric nanotweezers. Nat. Photonics 12, 195-201 (2018). doi: 10.1038/s41566-018-0134-3
[21] Lin, L. H. et al. Thermophoretic tweezers for low-power and versatile manipulation of biological cells. ACS Nano 11, 3147-3154 (2017). doi: 10.1021/acsnano.7b00207
[22] Jiang, H. R., Yoshinaga, N. & Sano, M. Active motion of a janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 268302 (2010). doi: 10.1103/PhysRevLett.105.268302
[23] Khadka, U. et al. Active particles bound by information flows. Nat. Commun. 9, 3864 (2018). doi: 10.1038/s41467-018-06445-1
[24] Lin, L. H. et al. Light-directed reversible assembly of plasmonic nanoparticles using plasmon-enhanced thermophoresis. ACS Nano 10, 9659-9668 (2016). doi: 10.1021/acsnano.6b05486
[25] Würger, A. Transport in charged colloids driven by thermoelectricity. Phys. Rev. Lett. 101, 108302 (2008). doi: 10.1103/PhysRevLett.101.108302
[26] Vigolo, D., Buzzaccaro, S. & Piazza, R. Thermophoresis and thermoelectricity in surfactant solutions. Langmuir 26, 7792-7801 (2010). doi: 10.1021/la904588s
[27] Movchan, T. G. et al. Dynamic light scattering study of cetyltrimethylammonium bromide aqueous solutions. Colloid J. 74, 239-247 (2012). doi: 10.1134/S1061933X1202007X
[28] Reichl, M. et al. Why charged molecules move across a temperature gradient: the role of electric fields. Phys. Rev. Lett. 112, 198101 (2014). doi: 10.1103/PhysRevLett.112.198101
[29] Kollipara, P. S., Lin, L. H. & Zheng, Y. B. Thermo-electro-mechanics at individual particles in complex colloidal systems. J. Phys. Chem. C 123, 21639-21644 (2019). doi: 10.1021/acs.jpcc.9b06425
[30] Wnek, W. J. & Davies, R. An analysis of the dependence of the zeta potential and surface charge on surfactant concentration, ionic strength, and pH. J. Colloid Interface Sci. 60, 361-375 (1977). doi: 10.1016/0021-9797(77)90295-8
[31] Keesom, W. H., Zelenka, R. L. & Radke, C. J. A zeta-potential model for ionic surfactant adsorption on an ionogenic hydrophobic surface. J. Colloid Interface Sci. 125, 575-585 (1988). doi: 10.1016/0021-9797(88)90024-0
[32] Rodríguez-Sevilla, P. et al. Optical forces at the nanoscale: size and electrostatic effects. Nano Lett. 18, 602-609 (2018). doi: 10.1021/acs.nanolett.7b04804
[33] Haro-González, P. et al. Optical trapping of NaYF4: Er3+, Yb3+ upconverting fluorescent nanoparticles. Nanoscale 5, 12192-12199 (2013). doi: 10.1039/c3nr03644h
[34] Decombe, J. B., Huant, S. & Fick, J. Single and dual fiber nano-tip optical tweezers: trapping and analysis. Opt. Express 21, 30521-30531 (2013). doi: 10.1364/OE.21.030521
[35] Leménager, G. et al. Size-dependent trapping behavior and optical emission study of NaYF4 nanorods in optical fiber tip tweezers. Opt. Express 26, 32156-32167 (2018). doi: 10.1364/OE.26.032156
[36] Liu, Z. H. et al. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application. Opt. Express 14, 12510-12516 (2006). doi: 10.1364/OE.14.012510
[37] Harris, J. T., Hueso, J. L. & Korgel, B. A. Hydrogenated amorphous silicon (a-Si: H) colloids. Chem. Mater. 22, 6378-6383 (2010). doi: 10.1021/cm102486w
[38] Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298-310 (1996). doi: 10.1006/jcis.1996.0217
[39] Pierce, D. T. & Spicer, W. E. Electronic structure of amorphous Si from photoemission and optical studies. Phys. Rev. B 5, 3017-3029 (1972). doi: 10.1103/PhysRevB.5.3017